International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 19 , Issue 1 , PP: 217-230, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

Neutrosophic Image Segmentation: An Approach for the Treatment of Uncertainty in Multimodal Information Systems

Mohd A. Wajid 1 * , Aasim Zafar 2

  • 1 Department of Computer Science, Aligarh Muslim University, Aligarh, 202002, India - (mawajid@myamu.ac.in)
  • 2 Department of Computer Science, Aligarh Muslim University, Aligarh, 202002, India - (azafar.cs@amu.ac.in)
  • Doi: https://doi.org/10.54216/IJNS.190117

    Received: May 06, 2022 Accepted: September 22, 2022
    Abstract

    Information explosion in this era has led to the proliferation of digital data in form of images, text, video, and audio. Uncertainty is a major issue in information access and retrieval models, and incomplete information needs to be treated in information systems because imprecision indicates the existence of a value that cannot be measured. There is no denial of the fact that uncertainty puts a hindrance in obtaining information in real-time systems, and as per knowledge rarely does any study of information retrieval using image segmentation treat imprecise and inconsistent information inherited in information systems. This work proposes to transform images in the neutrosophic domain for the treatment of uncertainty that persists in information recovery. Later, the image is segmented using the neutrosophic segmentation algorithm and its results are compared with the Modified Fuzzy c-Means segmentation algorithm, which is the earlier used segmentation algorithm in information systems. The experiment is conducted on a variety of multimodal images from the Berkeley Segmentation Dataset and Benchmark, showing the effectiveness of the proposed method for information systems. The proposed image segmentation using neutrosophy seems to yield a smaller error of 0.011, but the error obtained using the fuzzy c-means (MFCM) method is 0.13, which is larger than the proposed approach. The work also demonstrates how well neutrosophic segmentation can segment images having different noise levels as well as clean images. The results show that the proposed algorithm yields the most accurate segmented image for feature extraction which can be utilized while designing effective information systems.

    Keywords :

    Image Processing , Image Segmentation , Soft Computing , Fuzzy Logic , Uncertainty , Neutrosophic Logic , Neutrosophic Sets , Multimodal Information Systems.

    References

    [1]         R. K. Srihari, “Automatic Indexing and Content-Based Retrieval of Captioned Images,” Computer (Long. Beach. Calif)., vol. 28, no. 9, pp. 49–56, 1995, doi: 10.1109/2.410153.

    [2]         C. Frankel, M. J. Swain, and V. Athitsos, “WebSeer: An Image Search Engine for the World Wide Web,” Tech. Rep., pp. 1–24, 1997.

    [3]         M. A. Wajid and A. Zafar, “Multimodal Information Access and Retrieval Notable Work and Milestones,” 2019 10th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2019, pp. 1–6, 2019, doi: 10.1109/ICCCNT45670.2019.8944581.

    [4]         A. Znaidia, O. Ecole, and C. Paris, "Handling imperfections for multimodal image annotation To cite this version : in candidacy for the degree of Doctor of Ecole Centrale Paris Specialty : Computer Science Defended by Amel Znaidia Handling Imperfections for Multimodal Image Annotation prepare," 2014.

    [5]         A. Znaidia, H. Le Borgne, and C. Hudelot, “Tag completion based on belief theory and neighbor voting,” ICMR 2013 - Proc. 3rd ACM Int. Conf. Multimed. Retr., pp. 49–56, 2013, doi: 10.1145/2461466.2461476.

    [6]         D. Dubois and H. Prade, “Didier Dubois and Henri Prade Possibility Theory : Qualitative and Quantitative Aspects,” vol. 1, no. 1, pp. 169–226, 1998.

    [7]         M. A. Wajid and A. Zafar, "Multimodal Fusion : A Review, Taxonomy, Open Challenges, Research Roadmap and Future Directions," vol. 45, 2021.

    [8]         S. Dhar and M. K. Kundu, “Multi-class Image Segmentation Using Theory of Weak String Energy and Fuzzy Set,” Adv. Intell. Syst. Comput., vol. 1109, no. January, pp. 33–40, 2020, doi: 10.1007/978-981-15-2021-1_5.

    [9]         F. smarandache, florentin smarandache a unifying field in logics : neutrosophic logic . neutrosophy , neutrosophic set , neutrosophic probability . isbn 1-879585-76-6 american research press rehoboth florentin smarandache a unifying field in logics : neutrosophic logic . 2003.

    [10]       A. Zafar, “Neutrosophic Sets and Systems Neutrosophic Cognitive Maps for Situation Analysis Neutrosophic Cognitive Maps for Situation Analysis,” vol. 29, 2020.

    [11]       M. Abdel-Basset, M. El-hoseny, A. Gamal, and F. Smarandache, “A novel model for evaluation Hospital medical care systems based on plithogenic sets,” Artif. Intell. Med., vol. 100, no. June, p. 101710, 2019, doi: 10.1016/j.artmed.2019.101710.

    [12]       M. Abdel-Basset, G. Manogaran, A. Gamal, and V. Chang, “A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT,” IEEE Internet Things J., vol. 7, no. 5, pp. 4160–4170, 2020, doi: 10.1109/JIOT.2019.2931647.

    [13]       M. Abdel-Basset, A. Gamal, G. Manogaran, L. H. Son, and H. V. Long, “A novel group decision making model based on neutrosophic sets for heart disease diagnosis,” Multimed. Tools Appl., vol. 79, no. 15–16, pp. 9977–10002, 2020, doi: 10.1007/s11042-019-07742-7.

    [14]       A. A. Salama, “Neutrosophic Sets and Systems Neutrosophic Approach to Grayscale Images Domain Neutrosophic Approach to Grayscale Images Domain,” vol. 21, 2019.

    [15]       A. A. Salama, F. Smarandache, and M. Eisa, “Introduction to Image Processing via Neutrosophic Techniques,” Neutrosophic Sets Syst., vol. 5, pp. 1–6, 2014.

    [16]       S. Dhar and M. K. Kundu, “Accurate segmentation of complex document image using digital shearlet transform with neutrosophic set as uncertainty handling tool,” Appl. Soft Comput. J., vol. 61, pp. 412–426, 2017, doi: 10.1016/j.asoc.2017.08.005.

    [17]       P. D’Urso, “Informational Paradigm, management of uncertainty and theoretical formalisms in the clustering framework: A review,” Inf. Sci. (Ny)., vol. 400–401, pp. 30–62, 2017, doi: 10.1016/j.ins.2017.03.001.

    [18]       O. J. Tobias and R. Seara, “Image segmentation by histogram thresholding using fuzzy sets,” IEEE Trans. Image Process., vol. 11, no. 12, pp. 1457–1465, 2002, doi: 10.1109/TIP.2002.806231.

    [19]       T. Chaira and A. K. Ray, “Threshold selection using fuzzy set theory,” Pattern Recognit. Lett., vol. 25, no. 8, pp. 865–874, 2004, doi: 10.1016/j.patrec.2004.01.018.

    [20]       X. Yang, W. Zhao, Y. Chen, and X. Fang, “Image segmentation with a fuzzy clustering algorithm based on Ant-Tree,” Signal Processing, vol. 88, no. 10, pp. 2453–2462, 2008, doi: 10.1016/j.sigpro.2008.04.005.

    [21]       L. Ma and R. C. Staunton, “A modified fuzzy C-means image segmentation algorithm for use with uneven illumination patterns,” Pattern Recognit., vol. 40, no. 11, pp. 3005–3011, 2007, doi: 10.1016/j.patcog.2007.02.005.

    [22]       A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J. Garcia-Rodriguez, “A Review on Deep Learning Techniques Applied to Semantic Segmentation,” pp. 1–23, 2017, [Online]. Available: http://arxiv.org/abs/1704.06857.

    [23]       S. Ghosh, N. Das, I. Das, and U. Maulik, “Understanding deep learning techniques for image segmentation,” ACM Comput. Surv., vol. 52, no. 4, 2019, doi: 10.1145/3329784.

    [24]       K. Siang Tan and N. A. Mat Isa, “Color image segmentation using histogram thresholding Fuzzy C-means hybrid approach,” Pattern Recognit., vol. 44, no. 1, pp. 1–15, 2011, doi: 10.1016/j.patcog.2010.07.013.

    [25]       Sireesha Rodda , Vaibhav Kovela , Sanjay Dokula, Instance Segmentation and Labeling of Teeth from Dental X-Ray using Region Based Convolutional Neural Network, Journal of Neutrosophic and Fuzzy Systems, Vol. 2 , No. 2 , (2022) : 20-30

    [26]       S. Niu, Q. Chen, L. de Sisternes, Z. Ji, Z. Zhou, and D. L. Rubin, “Robust noise region-based active contour model via local similarity factor for image segmentation,” Pattern Recognit., vol. 61, pp. 104–119, 2017, doi: 10.1016/j.patcog.2016.07.022.

    [27]       K. Ding, L. Xiao, and G. Weng, “Active contours driven by local pre-fitting energy for fast image segmentation,” Pattern Recognit. Lett., vol. 104, pp. 29–36, 2018, doi: 10.1016/j.patrec.2018.01.019.

    [28]       S. Borjigin and P. K. Sahoo, “Color image segmentation based on multi-level Tsallis–Havrda–Charvát entropy and 2D histogram using PSO algorithms,” Pattern Recognit., vol. 92, pp. 107–118, 2019, doi: 10.1016/j.patcog.2019.03.011.

    [29]       F. Di Martino and S. Sessa, “PSO image thresholding on images compressed via fuzzy transforms,” Inf. Sci. (Ny)., vol. 506, pp. 308–324, 2020, doi: 10.1016/j.ins.2019.07.088.

    [30]       R. Assaf, A. Goupil, V. Vrabie, T. Boudier, and M. Kacim, “Persistent homology for object segmentation in multidimensional grayscale images,” Pattern Recognit. Lett., vol. 112, no. November, pp. 277–284, 2018, doi: 10.1016/j.patrec.2018.08.007.

    [31]       L. Li, L. Sun, Y. Xue, S. Li, X. Huang, and R. F. Mansour, “Fuzzy Multilevel Image Thresholding Based on Improved Coyote Optimization Algorithm,” IEEE Access, vol. 9, pp. 33595–33607, 2021, doi: 10.1109/ACCESS.2021.3060749.

    [32]       Mohammed I. Alghamdi, Neutrosophic set with Adaptive Neuro-Fuzzy Inference System for Liver Tumor Segmentation and Classification Model, International Journal of Neutrosophic Science, Vol. 18 , No. 2 , (2022) : 174-185

    [33]       H. D. CHENG, Y. GUO, and Y. ZHANG, “a Novel Image Segmentation Approach Based on Neutrosophic Set and Improved Fuzzy C-Means Algorithm,” New Math. Nat. Comput., vol. 07, no. 01, pp. 155–171, 2011, doi: 10.1142/s1793005711001858.

    [34]       M. Anousouya Devi, J. I. Sheeba, and K. S. Joseph, “Neutrosophic graph cut-based segmentation scheme for efficient cervical cancer detection,” J. King Saud Univ. - Comput. Inf. Sci., 2018, doi: 10.1016/j.jksuci.2018.09.014.

    [35]       T. Lei, X. Jia, Y. Zhang, L. He, H. Meng, and A. K. Nandi, “Significantly Fast and Robust Fuzzy C-Means Clustering Algorithm Based on Morphological Reconstruction and Membership Filtering,” IEEE Trans. Fuzzy Syst., vol. 26, no. 5, pp. 3027–3041, 2018, doi: 10.1109/TFUZZ.2018.2796074.

    [36]       A.A.Salama, M. Eisa, H. ElGhawalby, and A.E.Fawzy, “Neutrosophic Features for Image Retrieval,” Neutrosophic Sets Syst. Vol. 12, vol. 12, pp. 2–6, 2016, [Online]. Available: http://vixra.org/abs/1605.0014.

    [37]       Y. Guo and A. Şengür, “A novel image segmentation algorithm based on neutrosophic filtering and level set,” Neutrosophic Sets Syst., vol. 1, pp. 46–49, 2013.

    [38]       Y. Guo and H. D. Cheng, “New neutrosophic approach to image segmentation,” vol. 42, pp. 587–595, 2009, doi: 10.1016/j.patcog.2008.10.002.

    [39]       M. David, F. Charless, T. Doron, and J. Malik, “A database,” Datamation, vol. 43, no. 9, pp. 62–68, 1997.

    Cite This Article As :
    A., Mohd. , Zafar, Aasim. Neutrosophic Image Segmentation: An Approach for the Treatment of Uncertainty in Multimodal Information Systems. International Journal of Neutrosophic Science, vol. , no. , 2022, pp. 217-230. DOI: https://doi.org/10.54216/IJNS.190117
    A., M. Zafar, A. (2022). Neutrosophic Image Segmentation: An Approach for the Treatment of Uncertainty in Multimodal Information Systems. International Journal of Neutrosophic Science, (), 217-230. DOI: https://doi.org/10.54216/IJNS.190117
    A., Mohd. Zafar, Aasim. Neutrosophic Image Segmentation: An Approach for the Treatment of Uncertainty in Multimodal Information Systems. International Journal of Neutrosophic Science , no. (2022): 217-230. DOI: https://doi.org/10.54216/IJNS.190117
    A., M. , Zafar, A. (2022) . Neutrosophic Image Segmentation: An Approach for the Treatment of Uncertainty in Multimodal Information Systems. International Journal of Neutrosophic Science , () , 217-230 . DOI: https://doi.org/10.54216/IJNS.190117
    A. M. , Zafar A. [2022]. Neutrosophic Image Segmentation: An Approach for the Treatment of Uncertainty in Multimodal Information Systems. International Journal of Neutrosophic Science. (): 217-230. DOI: https://doi.org/10.54216/IJNS.190117
    A., M. Zafar, A. "Neutrosophic Image Segmentation: An Approach for the Treatment of Uncertainty in Multimodal Information Systems," International Journal of Neutrosophic Science, vol. , no. , pp. 217-230, 2022. DOI: https://doi.org/10.54216/IJNS.190117