International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 19 , Issue 1 , PP: 177-187, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

Neutrosophic C-Means Clustering with Optimal Machine Learning Enabled Skin Lesion Segmentation and Classification

Fatma Taher 1 * , Ahmed Abdelaziz 2

  • 1 College of Technological Innovation, Zayed University, Dubai, UAE - (Fatma.Taher@zu.ac.ae)
  • 2 Nova Information Management School, Universidade Nova de Lisboa, 1070-312, Lisboa, Portugal ; Information System Department, Higher Technological Institute, HTI, Cairo 44629, Egypt - (D20190535@novaims.unl.pt)
  • Doi: https://doi.org/10.54216/IJNS.190113

    Received: May 03, 2022 Accepted: August 08, 2022
    Abstract

    Early detection and classification of skin lesions using dermoscopic images have attracted significant attention in the healthcare sector. Automated skin lesion segmentation becomes tedious owing to the presence of artifacts like hair, skin line, etc. Earlier works have developed skin lesion detection models using clustering approaches. The advances in neutrosophic set (NS) models can be applied to derive effective clustering models for skin lesion segmentation. At the same time, artificial intelligence (AI) tools can be developed for the identification and categorization of skin cancer using dermoscopic images. This article introduces a Neutrosophic C-Means Clustering with Optimal Machine Learning Enabled Skin Lesion Segmentation and Classification (NCCOML-SKSC) model. The proposed NCCOML-SKSC model derives a NCC-based segmentation approach to segment the dermoscopic images. Besides, the AlexNet model is exploited to generate a feature vector. In the final stage, the optimal multilayer perceptron (MLP) model is utilized for the classification process in which the MLP parameters are chosen by the use of a whale optimization algorithm (WOA). A detailed experimental analysis of the NCCOML-SKSC model using a benchmark dataset is performed and the results highlighted the supremacy of the NCCOML-SKSC model over the recent approaches.

    Keywords :

    Image segmentation , Neutrosophic set , Feature Extraction , Machine learning , Whale optimization algorithm.

    References

    [1] Yang, X., Zeng, Z., Yeo, S.Y., Tan, C., Tey, H.L. and Su, Y., 2017. A novel multi-task deep

    learning model for skin lesion segmentation and classification. arXiv preprint arXiv:1703.01025.

    [2] Baig, R., Bibi, M., Hamid, A., Kausar, S. and Khalid, S., 2020. Deep learning approaches towards

    skin lesion segmentation and classification from dermoscopic images-a review. Current Medical

    Imaging, 16(5), pp.513-533.

    [3] Bissoto, A., Perez, F., Ribeiro, V., Fornaciali, M., Avila, S. and Valle, E., 2018. Deep-learning

    ensembles for skin-lesion segmentation, analysis, classification: RECOD titans at ISIC challenge

    2018. arXiv preprint arXiv:1808.08480.

    [4] Chen, J., Chen, J., Zhou, Z., Li, B., Yuille, A. and Lu, Y., 2021. MT-TransUNet: Mediating Multi-

    Task Tokens in Transformers for Skin Lesion Segmentation and Classification. arXiv preprint

    arXiv:2112.01767.

    [5] Liu, L., Tsui, Y.Y. and Mandal, M., 2021. Skin lesion segmentation using deep learning with the

    auxiliary task. Journal of Imaging, 7(4), p.67.

    [6] Khan, A.H., Iskandar, D.A., Al-Asad, J.F. and El-Nakla SAMIRAnd Alhuwaidi, S.A., 2021.

    Statistical Feature Learning through Enhanced Delaunay Clustering and Ensemble Classifiers for

    Skin Lesion Segmentation and Classification. Journal of Theoretical and Applied Information

    Technology, 99(5).

    [7] Mohammed I. Alghamdi, Neutrosophic set with Adaptive Neuro-Fuzzy Inference System for Liver

    Tumor Segmentation and Classification Model, International Journal of Neutrosophic Science, Vol.

    18 , No. 2 , (2022) : 174-185

    [8] Sireesha Rodda , Vaibhav Kovela , Sanjay Dokula, Instance Segmentation and Labeling of Teeth

    from Dental X-Ray using Region Based Convolutional Neural Network, Journal of Neutrosophic

    and Fuzzy Systems, Vol. 2 , No. 2 , (2022) : 20-30

    [9] Jabbar Abed Eleiwy, Characterizing wavelet coefficients with decomposition for medical images,

    Journal of Intelligent Systems and Internet of Things, Vol. 2 , No. 1 , (2021) : 26-32

    [10] Reshma, G., Al-Atroshi, C., Nassa, V.K., Geetha, B., Sunitha, G., Galety, M.G. and Neelakandan,

    S., 2022. Deep Learning-Based Skin Lesion Diagnosis Model Using Dermoscopic Images. Intell.

    Autom. Soft Comput, 31, pp.621-634.

    [11] Sundus Naji AL-Aziz , Reem Atassi , Abd Al-Aziz Hosni El-Bagoury, Hybridization of

    Neutrosophic Logic with Quasi-Oppositional Chimp Optimization based Data Classification

    Model, International Journal of Neutrosophic Science, Vol. 18 , No. 3 , (2022) : 125-134

    [12] Khan, M.A., Sharif, M.I., Raza, M., Anjum, A., Saba, T. and Shad, S.A., 2019. Skin lesion

    segmentation and classification: A unified framework of deep neural network features fusion and

    selection. Expert Systems, p.e12497.

    [13] Khouloud, S., Ahlem, M., Fadel, T. and Amel, S., 2022. W-net and inception residual network for

    skin lesion segmentation and classification. Applied Intelligence, 52(4), pp.3976-3994.

    [14] M. F.O. Noboa , O. E.P. Copa , Eloísa A.N. G., Comparative analysis of multicriteria methods

    based on single-valued neutrosophic numbers for the evaluation of medical

    technologies, International Journal of Neutrosophic Science, Vol. 18 , No. 4 , (2022) : 72-82

    [15] Dhar, S. and Kundu, M.K., 2021. Accurate multi-class image segmentation using weak continuity

    constraints and neutrosophic set. Applied Soft Computing, 112, p.107759.

    [16] Kalaiarasi, P. and Esther Rani, P., 2021. A Comparative Analysis of AlexNet and GoogLeNet with

    a Simple DCNN for Face Recognition. In Advances in Smart System Technologies (pp. 655-668).

    Springer, Singapore.

    [17] Andino Maseleno, Design of Optimal Machine Learning based Cybersecurity Intrusion Detection

    Systems, Journal of Cybersecurity and Information Management, Vol. 0 , No. 1 , (2019) : 32-43

    [18] Chakraborty, S., Saha, A.K., Sharma, S., Mirjalili, S. and Chakraborty, R., 2021. A novel enhanced

    whale optimization algorithm for global optimization. Computers & Industrial Engineering, 153,

    p.107086.

    [19] Hawas, A.R., Guo, Y., Du, C., Polat, K. and Ashour, A.S., 2020. OCE-NGC: A neutrosophic graph

    cut algorithm using an optimized clustering estimation algorithm for dermoscopic skin lesion

    segmentation. Applied Soft Computing, 86, p.105931.

    Cite This Article As :
    Taher, Fatma. , Abdelaziz, Ahmed. Neutrosophic C-Means Clustering with Optimal Machine Learning Enabled Skin Lesion Segmentation and Classification. International Journal of Neutrosophic Science, vol. , no. , 2022, pp. 177-187. DOI: https://doi.org/10.54216/IJNS.190113
    Taher, F. Abdelaziz, A. (2022). Neutrosophic C-Means Clustering with Optimal Machine Learning Enabled Skin Lesion Segmentation and Classification. International Journal of Neutrosophic Science, (), 177-187. DOI: https://doi.org/10.54216/IJNS.190113
    Taher, Fatma. Abdelaziz, Ahmed. Neutrosophic C-Means Clustering with Optimal Machine Learning Enabled Skin Lesion Segmentation and Classification. International Journal of Neutrosophic Science , no. (2022): 177-187. DOI: https://doi.org/10.54216/IJNS.190113
    Taher, F. , Abdelaziz, A. (2022) . Neutrosophic C-Means Clustering with Optimal Machine Learning Enabled Skin Lesion Segmentation and Classification. International Journal of Neutrosophic Science , () , 177-187 . DOI: https://doi.org/10.54216/IJNS.190113
    Taher F. , Abdelaziz A. [2022]. Neutrosophic C-Means Clustering with Optimal Machine Learning Enabled Skin Lesion Segmentation and Classification. International Journal of Neutrosophic Science. (): 177-187. DOI: https://doi.org/10.54216/IJNS.190113
    Taher, F. Abdelaziz, A. "Neutrosophic C-Means Clustering with Optimal Machine Learning Enabled Skin Lesion Segmentation and Classification," International Journal of Neutrosophic Science, vol. , no. , pp. 177-187, 2022. DOI: https://doi.org/10.54216/IJNS.190113