Volume 19 , Issue 1 , PP: 99-106, 2022 | Cite this article as | XML | Html | PDF | Full Length Article
Murtadha M. Abdulkadhim 1 * , Qays H. Imran 2 , Amer K. Abed 3 , Said Broumi 4
Doi: https://doi.org/10.54216/IJNS.190107
The paper provided a new notion of neutrosophic separation axioms as neutrosophic gαg-Ri-space & neutrosophic gαg-Tj-space (note that the indexes i & j are natural numbers of the spaces R & T are from 0 to 1 & from 0 to 2 alternately).
Ng&alpha , g-OS , Ng&alpha , g-CS , Ng&alpha , g-Ri-space , i=0,1 & , Ng&alpha , g-Tj-space , j=0,1,2.
[1] F. Smarandache, A unifying field in logics: neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic
probability. American Research Press, Rehoboth, NM, (1999).
[2] F. Smarandache, Neutrosophy & neutrosophic logic, first international conference on neutrosophy,
neutrosophic logic, set, probability, & statistics, University of New Mexico, Gallup, NM 87301, USA (2002).
[3] M. Parimala , M. Karthika , Florentin Smarandache , Said Broumi, On αω-closed sets and its connectedness
in terms of neutrosophic topological spaces, International Journal of Neutrosophic Science, 2 (2020), 82-88
[4] I. Arokiarani, R. Dhavaseelan, S. Jafari & M. Parimala, On Some New Notions & Functions in Neutrosophic
Topological Spaces. Neutrosophic Sets and Systems, 16(2017), 16-19.
[5] Q. H. Imran, F. Smarandache, R. K. Al-Hamido & R. Dhavaseelan, On neutrosophic semi-α-open sets.
Neutrosophic Sets and Systems, 18(2017), 37-42.
[6] R. Dhavaseelan & S. Jafari, Generalized Neutrosophic closed sets. New trends in Neutrosophic theory and
applications, 2(2018), 261-273.
[7] R. Dhavaseelan, R. Narmada Devi, S. Jafari & Q. H. Imran, Neutrosophic -continuity. Neutrosophic Sets
and Systems, 27(2019), 171-179.
[8] Md. Hanif PAGE & Q. H. Imran, Neutrosophic generalized homeomorphism. Neutrosophic Sets and Systems,
35(2020), 340-346.
[9] Q. H. Imran, R. Dhavaseelan, A. H. M. Al-Obaidi & M. H. Page, On neutrosophic generalized alpha
generalized continuity. Neutrosophic Sets and Systems, 35(2020), 511-521.
[10] A. Pushpalatha & T. Nandhini, Generalized closed sets via neutrosophic topological spaces. Malaya Journal
of Matematik, 7(1), (2019), 50-54.
[11] D. Jayanthi, α Generalized Closed Sets in Neutrosophic Topological Spaces. International Journal of
Mathematics Trends and Technology (IJMTT)- Special Issue ICRMIT March (2018), 88-91.