Volume 18 , Issue 4 , PP: 204-222, 2022 | Cite this article as | XML | Html | PDF | Full Length Article
A. Vadivel 1 * , C. John Sundar 2 , K. Kirubadevi 3 , S. Tamilselvan 4
Doi: https://doi.org/10.54216/IJNS.180419
In this paper, we introduce the concepts of neutrosophic nano δ-open sets and some stronger and weaker forms
of neutrosophic nano open sets in neutrosophic nano topological spaces. And, show that the set of all neutrosophic
nano δ-open sets are also a neutrosophic nano topology, which is called the neutrosophic nano δ
topology. Further, we dealt with the concepts of neutrosphic nano δ-interior and neutrosophic nano δ-closure
operators. Moreover, we define the product related neutrosophic nano topological spaces and proved some
theorems related to this.
neutrosophic nano open, neutrosophic nano &delta , -open , neutrosophic nano &delta , -&alpha , open , neutrosophic
nano &delta , -S open , neutrosophic nano &delta , -P open , neutrosophic nano &delta , -&gamma , open and neutrosophic nano &delta , -&beta , open
AMS (2000) subject classification: 03E72 , 54A05 , 54A40.
[1] Al-Hamido, R.K. On neutrosophic crisp supra bi-topological spaces. International Journal of Neutrosophic
Sciences 2020, Vol 4 (1), pp 36-46.
[2] Atanassov, K.; Stoeva, S. Intuitionistic fuzzy sets. In Proceedings of the Polish Symposium on Interval
and Fuzzy Mathematics 1983, Poznan, Poland, pp 23-26.
[3] Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 1986, Vol 20, pp 87-96.
[4] Chang, C.L. Fuzzy topological spaces. J. Math. Anal. Appl. 1968, Vol 24, pp 182-190.
[5] Coker, D. An introduction to intuitionistic fuzzy topological spaces. Fuzzy sets and systems 1997, Vol
88, pp 81-89.
[6] Das, S.K.; Edalatpanah, S.A. A new ranking function of triangular neutrosophic number and its application
in inter programming. International Journal of Neutrosophic Sciences 2020, Vol 4 (2), pp 82-92.
[7] Lellis Thivagar, M.; Richard, C. On nano forms of weekly open sets. International journal of mathematics
and statistics invention 2013, Vol 1 (1), pp 31-37.
[8] Lellis Thivagar, M.; Jafari, S.; Sutha Devi, V.; Antonysamy, V. A novel approach to nano topology via
neutrosophic sets. Neutrosophic Sets and Systems 2018, Vol 20, pp 86-94.
[9] Mullai, M.; Sangeetha, K.; Surya, R.; Madhan Kumar, G.; Jayabalan, R.; Broumi, S. A single valued
neutrosophic inventory model with neutrosophic random variable. International Journal of Neutrosophic
Sciences 2020, Vol 1 (2), pp 52-63.
[10] Pankajam, V.; Kavitha, K. δ-open sets and δ-nano continuity in δ-nano topological spaces. International
Journal of Innovative Science and Research Technology 2017, Vol 2 (12), pp 110-118.
[11] Parimala, M.; Jeevitha, R.; Jafari, S.; Samarandache, F.; Karthika, M. Neutrosophic nano αψ-closed sets
in neutrosophic nano topological spaces. Journal of advance Research in Dynamical and Control Systems
2018, Vol 10, pp 523-531.
[12] Parimala, M.; Karthika, K.; Smarandache, F.; Broumi, S. On αw-closed sets and its connectedness in
terms of neutrosophic topological spaces. International Journal of Neutrosophic Sciences 2020, Vol 2, pp
82-88.
[13] Pawlak, Z. Rough sets. International Journal of Computer and Information Sciences 1982, Vol 11, pp
341-356.
[14] S. Saha, “Fuzzy δ-continuous mappings”, Journal of Mathematical Analysis and Applications, Vol 126,
pp 130-142, 1987.
[15] Salama, A.A.; Alblowi, S.A. Generalized neutrosophic set and generalized neutrosophic topological
spaces. Journal of Computer Sci. Engineering 2012, Vol 2 (7), pp 129-132.
[16] Salama, A.A.; Alblowi, S.A. Neutrosophic Set and Neutrosophic Topological Spaces. IOSR Journal of
Mathematics 2012, Vol 3 (4), pp 31-35.
[17] Smarandache, F. A unifying field in logics: neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic
probability, American Research Press, Rehoboth, NM, 1999.
[18] Smarandache, F. Neutrosophy and neutrosophic logic, First International Conference on Neutrosophy,
Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301,
USA 2002.
[19] Vadivel, A.; Seenivasan, M.; John Sundar, C. An Introduction to δ-open sets in a Neutrosophic Topological
Spaces. Journal of Physics: Conference Series 2021, 1724, 012011.
[20] Vadivel, A.; John Sundar, C. Neutrosophic δ-Open Maps and Neutrosophic δ-Closed Maps. International
Journal of Neutrosophic Science (IJNS) 2021, Vol 13 (2), pp 66-74.
[21] Vadivel, A.; Thangaraja, P.; John Sundar, C. Neutrosophic e-continuous maps and neutrosophic eirresolute
maps. Turkish Journal of Computer and Mathematics Education 2021, Vol 12 (1S), pp 369-375.
[22] Vadivel, A.; Thangaraja, P.; John Sundar, C. Neutrosophic e-Open Maps, Neutrosophic e-Closed Maps
and Neutrosophic e-Homeomorphisms in Neutrosophic Topological Spaces. AIP Conference Proceedings
2021, 2364, 020016.
[23] Zadeh, L.A. Fuzzy sets. Information and control 1965, Vol 8, pp 338-353.