86 65
Full Length Article
International Journal of Neutrosophic Science
Volume 18 , Issue 3, PP: 104-110 , 2022 | Cite this article as | XML | Html |PDF

Title

Inverse Dominating Set in Neutrosophic Graphs

Authors Names :   M. Mullai   1     S. Broumi   2     P.K.Santhi   3  

1  Affiliation :  Department of Mathematics, Alagappa University, Karaikudi, Tamilnadu, India.

    Email :  mullaim@alagappauniversity.ac.in


2  Affiliation :  Laboratory of Information processing, University Hassan II, B.P 7955, Sidi Othman, Casablanca, Morocco.

    Email :  broumisaid78@gmail.com


3  Affiliation :  Department of Mathematics, Jayaraj Annapackiam College for Women (Autonomous),Periyakulam, Theni(Dist)Tamilnadu, India

    Email :  pksanthimat@annejac.ac.in



Doi   :   https://doi.org/10.54216/IJNS.180309

Received: January 28, 2022 Accepted: April 20, 2022

Abstract :

In this paper, the concept of inverse domination in neutrosophic graph is established. The definition of inverse domination number, inverse dominating set, inverse split and non split dominating sets in neutrosophic graph are developed with suitable examples here. Also, the theorems in inverse domination in neutrosophic graph and the bound on inverse domination number in neutrosophic graph are derived.

 

Keywords :

Neutrosophic Graph , Inverse Dominating Set , Inverse Dominating Number , Neutrosophic Path , Minimum Dominating Set

References :

[1] Ameenal Bibi, K.; Selvakumar, R. The inverse split and non-split domination in graphs.

[2] Atanassov, K. Intuitionistic fuzzy sets: Theory and applications. Physica, New York, 1999; Volume 3, pp. 154-196.

[3] Atanassov, K. Intuitionistic fuzzy sets Fuzzy sets and Systems, 1986; Volume 20, pp. 87-96.

[4] Bhutani, K.R. on automorphism of fuzzy graphs.Pattern Recognition Letters, 1989; Volume 9, pp. 159-162.

[5] Chang, G.J. Algorithmic aspects of domination in graphs,in D.Z. Du, P.M. Paradalos(Eds.),Handbook of combinatorial Optimization, 1998; Volume 3,,Kluwer,Boston, MA, pp. 339-405.

[6] Domke, G.S.; Donbar; Markus, L.R. The inverse domination number of a graph. ARS combinatoria, 2004; Volume 72, pp. 149-160.

[7] Geetha, S.; Harinarayanan, C.V.R. Inverse split domination in fuzzy graphs. International Journal of Engineering Research and Applications, 2014; Volume 4, pp. 118-121.

[8] Ghobadi, S.; Soner; Mahyoub, Q.M. Mahyoub Inverse dominating set in fuzzy graphs.

[9] Jayalakshmi, P.J.; Harinarayanan, C.V.R. , 1986; Volume , pp. .

[10] Atanassov, K. Harinarayanan.Independent and Total strong (weak) domination in fuzzy graph. Interna-tional journal of computational Engineering Research, 1986; Volume 04, pp. 71-74.

[11] Karunambigai, M.G.; Sivasankar, S.; Palanivel, K. Edge regular intuitionistic fuzzy graph. Advances in Fuzzy sets and systems, 2015; Volume 20(1), pp. 25-46.

[12] Kaufmann, A. Introduction a` la the´orie des sous-ensembles flous,loEle´ments the´oriques de base.paris: Masson et Cie;(1976).

[13] Kulli, V.R.; Sigarkanti, L.S.C. Inverse domination in graphs. Nat.Acad.Sci.Ltt., 1991; Volume 14, pp. 473-475.


Cite this Article as :
M. Mullai , S. Broumi , P.K.Santhi, Inverse Dominating Set in Neutrosophic Graphs, International Journal of Neutrosophic Science, Vol. 18 , No. 3 , (2022) : 104-110 (Doi   :  https://doi.org/10.54216/IJNS.180309)