137 133
Full Length Article
International Journal of Neutrosophic Science
Volume 18 , Issue 3, PP: 93-113 , 2022 | Cite this article as | XML | Html |PDF

Title

2-Absorbing Neutrosophic Weakly Completely Γ-Ideals

Authors Names :   Serkan Onar   1 *  

1  Affiliation :  Department of Mathematical Engineering, Yildiz Technical University, Davutpas¸a-Istanbul, Turkey

    Email :  serkan10ar@gmail.com



Doi   :   https://doi.org/10.54216/IJNS.180308

Received: January 28, 2022 Accepted: April 17, 2022

Abstract :

The goal of this study is to present a definition of a generalization of neutrosophic prime Γ-ideals in Γ-rings by introducing 2-absorbing neutrosophic weakly completely Γ-ideals of commutative Γ-rings and to propose their properties. Also, we give the notion of 2-absorbing K- Γ-neutrosophic ideals of Γ-rings. Moreover, we acquire a scheme that relationship between definition of 2-absorbing neutrosophic weakly completely Γ-ideals and 2-absorbing K- Γ-neutrosophic ideals of Γ-rings. Finally, we investigate neutrosophic quotient Γ-ring of  induced by the 2-absorbing neutrosophic weakly completely Γ-ideal is a 2-absorbing Γ− ring.

Keywords :

2-absorbing , 2-absorbing neutrosophic weakly completely Γ-ideal , 2-absorbing K-neutrosophic Γ-ideal

 

References :

[1] Smarandache, F., “A unifying field in logics: Neutrosophy Logic. Neutrosophy, Neutrosophic Probability, Set and Statistics”, American esearch, ehoboth 1998.

[2] Kandasamy, V.W.B., and Smarandache, F., “Some Neutrosophic Algebraic Structures and Neutrosophic N-Algebraic Structures”, Hexis, Phonex, Arizona 2006.

[3] Shabir, M., Ali, M., Naz, M., and Smarandache, F., “Soft Neutrosophic Group”, Neutrosophic Sets and Systems, Vol.1, pp. 13-25, 2013.

[4] Wang, H., Smarandache, F., Zhang, Y., Sunderraman ., “Single Valued Neutrosophic Sets”, Proc. of 10th Int. Conf. on Fuzzy Theory and Technology, Salt Lake City, Utah, July 21-26, 2005.

[5] Cetkin, V., Varol, B.P. and Aygun,¨ H., “On Neutrosophic Submodules Of A Module, Hacettepe Journal of Mathematics and Statistics, Vol. 46(5), pp. 791-799, 2017.

[6] Majumdar, P., and Samanta, S.K., “On Similarity And Entropy Of Neutrosophic Sets”, Journal of Intel-ligent and Fuzzy Systems, Vol. 26(3), pp. 1245-1252, 2014.

[7] Salama, A.A., and Al-Blowi, S.A., “Neutrosophic Set And Neutrosophic Topological Spaces”, Iosr Jour-nal of Mathematics, Vol. 3(4), pp. 31-35, 2012.

[8] Olgun, N., and Hatip, A., “On efined Neutrosophic -module”, IJNS, Vol. 7(2), pp. 87-96, 2020.

[9] Nobusawa, N., “On A Generalization Of The ing Theory”, Osaka Journal Of Mathematics, Vol.1, pp. 81-89, 1964.

[10] Barnes, W.E., “On The Γ− ings Of Nobusawa”, Pacific Journal Of Mathematics, Vol. 18, pp. 411-422, 1966.

[11] Kyuno, S., “A Gamma ing With The ight And Left Unities”, Mathematica Japonica, Vol. 24(2), pp. 191-193, 1979.

[12] Kyuno, S., “On Prime Gamma ings”, Pacific Journal of Mathematics, Vol. 75(1), pp. 185-190, 1978.

[13] Luh, J., “On The Theory Of Simple Γ− ings”, Michigan Mathematics Journal, Vol. 16, pp. 65-75, 1969.

[14] Badawi, A., “On 2-Absorbing Ideals Of Commutative ings”, Bulletin of the Australian Mathematical Society, Vol. 75, pp. 417-429, 2007.

[15] Anderson, D.F., and Badawi, A., “On n-Absorbing Ideals Of Commutavie ings”, Commutative Algebra, Vol. 39, pp. 1646-1672, 2011.

[16] Badawi, A., Tekir, U., Yetkin, E., “On 2-Absorbing Primary Ideals In Commutative ings”, Bulletin of the Australian Mathematical Society, Vol. 51(4), pp. 1163-1173, 2014.

[17] Badawi, A., and Darani, A.Y., “On Weakly 2-Absorbing Ideals Of Commutative ings”, Houston Journal of Mathematics, Vol. 39, pp. 441-452, 2013.

[18] Darani, A.Y., and Puczylowski, E. ., “On 2-Absorbing Commutative Semigroups And Their Applica-tions To ings”, Semigroup Forum, Vol. 86, pp. 83-91, 2013.

[19] Kumar, P., Dubey, M.K., and Sarohe, P., “Some esults On 2-Absorbing Ideals In Commutative Semir-ings”, Journal of Mathematics and Applications, Vol. 38, pp. 77-84, 2015.

[20] Darani, A.Y., “On L−fuzzy 2-Absorbing Ideals”, Italian Journal of Pure and Applied Mathematics, Vol. 36, pp. 147-154, 2016.

[21] Darani, A.Y., and Hashempoor, A., “L−fuzzy 0-(1- or 2- or 3-) 2-Absorbing Ideals In Semiring”, Annals of Fuzzy Mathematics and Informatics, Vol. 7(2), pp. 303-311, 2014.

[22] Sonmez,¨ D., Yes¸ilot, G., Onar, S., Ersoy, B.A., and Davvaz, B., “On 2-Absorbing Primary Fuzzy Ideals of Commutative ings”, Mathematical Problems in Engineering, Vol. 2017, Article ID 5485839.

[23] Dutta, T.K., and Chanda, T., “Structures Of Fuzzy Ideals Of Γ− ing”, Bulletin of the Malaysian Math-ematical Sciences Society, Vol. 28, pp. 9-18, 2005.

[24] Onar, S., Sonmez, D., Ersoy, B.A., Yesilot, G., Hila, K., “A Study On Fuzzy 2-Absorbing Primary Γ-Ideals In Γ- ings”, Filomat, Vol. 31(18), pp. 5753–5767, 2017.

[25] Yella, B., Akbar ., “On Neutrosophic Γ-Semirings”, Neutrosophic Set and Systems, Vol. 47, pp. 338-353, 2021.


Cite this Article as :
Serkan Onar, 2-Absorbing Neutrosophic Weakly Completely Γ-Ideals, International Journal of Neutrosophic Science, Vol. 18 , No. 3 , (2022) : 93-113 (Doi   :  https://doi.org/10.54216/IJNS.180308)