129 89
Full Length Article
International Journal of Neutrosophic Science
Volume 18 , Issue 2, PP: 254-261 , 2022 | Cite this article as | XML | Html |PDF

Title

On NeutroBitopological Space

Authors Names :   Bhimraj Basumatary   1 *     Jeevan Krishna Khaklary   2     Said Broumi   3  

1  Affiliation :  Department of Mathematical Sciences, Bodoland University, Kokrajhar, INDIA

    Email :  brbasumatary14@gmail.com


2  Affiliation :  Department of Mathematics, Central Institute of Technology, Kokrajhar, INDIA

    Email :  jk.khaklary@cit.ac.in


3  Affiliation :  Laboratory of Information Processing, Faculty of Science Ben MSik, University Hassan II, Casablanca, MOROCCO

    Email :  broumisaid78@gmail.com



Doi   :   https://doi.org/10.54216/IJNS.180208

Received: November 10, 2021 Accepted: March 23, 2022

Abstract :

The current study shows the study of NeutroBitopological Space. In this work, the properties of NeutroBitopological Space are discussed. It is seen that many properties do not coincide with the properties of general Bitopological space. The terms NeutroInterior, NeutroClosure, and NeutroBoundary are defined with examples also their properties are observed. 

Keywords :

NeutroInterior , NeutroClosure , NeutroBoundary , NeutroBitopological Space

References :

[1]    Smarandache, F. “Neutrosophy / Neutrosophic probability, set, and logic”. American Research Press, 1998. http://gallup.unm.edu/~smarandache/NeutLog.txt

[2]    Smarandache, F. “Neutrosophy and neutrosophic logic, first international conference on neutrosophy, neutrosophic logic, set, probability, and statistics”. University of New Mexico, Gallup, NM 87301, USA, 2002

[3]    Smarandache, F. “Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures, in Advances of Standard and Nonstandard NeutrosophicTheories”.Pons Publishing House Brussels, Belgium, Ch. 6, 240-265, 2019.

[4]    Smarandache, F. “Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures (revisited)”.Neutrosophic Sets and Systems, 31, 1-16,2020.

[5]    Sumathi, I. R. &Arockiarani, I. “Topological Group Structure of Neutrosophic set”. Journal of Advanced Studies in Topology,7(1), 12-20, 2016.

[6]    Mwchahary, D. D. &Basumatary, B. “A note on Neutrosophic Bitopological Space”.Neutrosophic Sets and Systems,33, 134-144, 2020.

[7]    Smarandache, F. “NeutroAlgebra is a Generalization of Partial Algebra”. International Journal of Neutrosophic Science (IJNS), 2, 8-17, 2020.

[8]    Şahin, M., Kargin, A. &Yücel, M. “Neutro-Topological Space and Anti-Topological Space”.The Educational Publisher Inc., 1091 West 1st Ave., Grandview Heights, OH 43212, United States, 2021.

[9]    Smarandache, F. “Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures (revisited)”. Neutrosophic Sets and Systems, 31, 1-16, 2020.

[10] Smarandache, F. “Generalizations and Alternatives of Classical Algebraic Structures to NeutroAlgebraic Structures and AntiAlgebraicStructures”.Journal of Fuzzy Extension and Applications (JFEA), J. Fuzzy. Ext. Appl.,1(2), 85–87, 2020.

[11] Agboola, A. A. A., Ibrahim, M. A. &Adeleke, E. O. “Elementary Examination of NeutroAlgebras and AntiAlgebrasviz-a-viz the Classical Number Systems”. International Journal of Neutrosophic Science (IJNS), 4, 16-19, 2020.

[12] Agboola, A. A. A. “Introduction to NeutroGroups”. International Journal of Neutrosophic Science (IJNS), 6, 41-47, .2020.

[13] Agboola, A. A. A. “Introduction to NeutroRings”. International Journal of Neutrosophic Science (IJNS), 7, 62-73, 2020.

[14] Rezaei, A. &Smarandache, F. “On Neutro-BE-algebras and Anti-BE-algebras”. International Journal of Neutrosophic Science (IJNS), 4, 8-15, .2020.

[15] Hamidi, M. &Smarandache, F. “Neutro-BCK-Algebra”. International Journal of Neutrosophic Science (IJNS), 8, 110-117, 2020.

[16] Smarandache, F., Rezaei, A. & Kim, H. S. “A New Trend to Extensions of CI-algebras”. International Journal of Neutrosophic Science (IJNS), 5(1), 8-15,2020.

[17] Agboola, A. A. A. “On Finite NeutroGroups of Type-NG”. International Journal of Neutrosophic Science (IJNS), 10(2), 84-95, 2020.

[18] Broumi, S., Deli, I. and Smarandache, F. “Relations on interval valued neutrosophic soft sets”. J. New Results Sci., 3(5), pp.1–20, 2014.

[19] Broumi, S., Deli, I. and Smarandache, F. “Neutrosophic parametrized soft set theory and its decision making”. International Frontier Science Letters, 1(1), pp.1–11, 2014.

[20] Basumatary, B., Wary, N., Mwchahary, D.D., Brahma, A.K., Moshahary, J., Basumatary, U.R., and Basumatary, J. “A study on some properties of neutrosophic multi topological group”. Symmetry, 13(9), pp.1689, 2021.

[21] Basumatary, B., Khaklary,  J. K., Wary, N, and Smarandache, F. “On Some properties of NeutroTopological space, Acceted for publication.

 

[22] Basumatary, B. “Towards forming the field of fuzzy closure with reference to fuzzy boundary”. Journal of Process Management. New Technologies, 4(1), pp.30–40, 2016.


Cite this Article as :
Bhimraj Basumatary , Jeevan Krishna Khaklary , Said Broumi, On NeutroBitopological Space, International Journal of Neutrosophic Science, Vol. 18 , No. 2 , (2022) : 254-261 (Doi   :  https://doi.org/10.54216/IJNS.180208)