American Journal of Business and Operations Research

Journal DOI

https://doi.org/10.54216/AJBOR

Submit Your Paper

2692-2967ISSN (Online) 2770-0216ISSN (Print)

Volume 4 , Issue 1 , PP: 39-46, 2021 | Cite this article as | XML | Html | PDF | Full Length Article

Applying Big Data Analytics to Retail for Improved Supply Chain Visibility

Alshaimaa A. Tantawy 1 * , Zenat Ahmed 2 , Mahmoud M. Ali 3

  • 1 Faculty of computers and Informatics, Zagazig University, Zagazig, 44519, Egypt - (Eatantawi @ fci.zu.edu.eg)
  • 2 Faculty of computers and Informatics, Zagazig University, Zagazig, 44519, Egypt - (zenatahmed@zu.edu.eg)
  • 3 Faculty of computers and Informatics, Zagazig University, Zagazig, 44519, Egypt - (mmsabe@zu.edu.eg)
  • Doi: https://doi.org/10.54216/AJBOR.040104

    Received: January 15, 2021 Accepted: August 14, 2021
    Abstract

    Retail supply chains generate huge volumes of data that can provide valuable insights if analyzed effectively. This paper explores how retailers can leverage Big Data analytics techniques on supply chain data to gain enhanced visibility into their operations. We examine three use cases of data-driven supply chain visibility: (1) predictive replenishment to anticipate future demand and optimize inventory levels; (2) personalized assortment optimization to tailor product selections for local customer segments; and (3) optimized order fulfillment to improve delivery times and reduce transportation costs. We analyze how retailers can apply machine learning algorithms and statistical analysis on point-of-sale data, inventory data, customer data and external data sources to uncover hidden patterns and drive data-driven decisions in these areas. The results include reduced excess inventory, fewer stock-outs, higher in-store product availability, lower fulfillment costs and improved customer experience. Data-driven supply chain visibility allows retailers to transition from a reactive, speculative business model to a predictive, personalized model that enhances competitiveness.

    Keywords :

    Big Data , Supply Chain , Data Analytics , Optimization

    References

    [1]  Leveling  J,  Edelbrock  M,  Otto  B.  Big  data  analytics  for  supply  chain  management.  In2014  IEEE international conference on industrial engineering and engineering management 2014 Dec 9 (pp. 918 -922). IEEE.

    [2]  Tiwari S, Wee HM, Daryanto  Y. Big data analytics in supply chain management between 2010 and 2016: Insights to industries. Computers & Industrial Engineering. 2018 Jan 1;115:319 -30.

    [3]  Kache  F,  Seuring  S.  Challenges  and  opportunities  of  digital  information  at  the  intersection  of  Big  Data Analytics  and  supply  chain  management.  International  journal  of  operations  &  production  management. 2017 Jan 3.

    [4]  Tan KH, Zhan Y, Ji G, Ye F, Chang C. Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph. International Journal of Production Economics. 2015 Jul 1;165:223-33.

    [5]  Waller MA, Fawcett SE. Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. Journal of Business Logistics. 2013 Jun;34(2):77-84.

    [6]  Barratt M, Oke A. Antecedents of supply chain visibility in retail supply chains: a resource-based theory perspective. Journal of operations management. 2007 Nov 1;25(6):1217-33.

    [7]  Arunachalam  D,  Kumar  N,  Kawalek  JP.  Understanding  big  data  analytics  capabilities  in  supply  chain management: Unravelling the issues, challenges and implications for practice. Transportation Research Part E: Logistics and Transportation Review. 2018 Jun 1;114:416-36.

    [8]  Dubey R, Gunasekaran A, Childe SJ, Papadopoulos T, Luo Z, Wamba SF, Roubaud D. Can big data and predictive  analytics  improve  social  and  environmental  sustainability?.  Technological  Forecasting  and Social Change. 2019 Jul 1;144:534-45.

    [9]  Kamble SS, Gunasekaran A, Gawankar SA. Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics. 2020 Jan 1;219:179-94.

    [10]  Hazen BT, Boone CA, Ezell JD, Jones-Farmer LA. Data quality for data science, predictive  analytics, and big  data  in  supply  chain  management: An  introduction  to  the  problem  and  suggestions  for  research  and applications. International Journal of Production Economics. 2014 Aug 1;154:72 -80.

    [11]  Delen  D,  Hardgrave  BC,  Sharda  R.  RFID  for  better  supply‚Äźchain  management  through  enhanced information visibility. Production and operations management. 2007 Sep 10;16(5):613 -24.

    [12]  Zhong  RY,  Newman  ST,  Huang  GQ,  Lan  S.  Big  Data  for  supply  chain  management  in  the  service  and manufacturing  sectors:  Challenges,  opportunities,  and  future  perspectives.  Computers  &  Industrial Engineering. 2016 Nov 1;101:572-91.

    [13]  Wamba SF, Dubey R, Gunasekaran A, Akter S. The performance effects of big data analytics and supply chain  ambidexterity:  The  moderating  effect  of  environmental  dynamism.  International  Journal  of Production Economics. 2020 Apr 1;222:107498. 

    [14]  ur  Rehman  MH,  Chang  V,  Batool  A,  Wah  TY.  Big  data  reduction  framework  for  value  creation  in sustainable enterprises. International journal of information management. 2016 Dec 1;3 6(6):917-28.

    [15]  Dash R, McMurtrey M, Rebman C, Kar UK. Application of artificial intelligence in automation of supply chain management. Journal of Strategic Innovation and Sustainability. 2019;14(3):43 -53.

    [16]  Akter S, Wamba SF. Big data analytics in E-commerce: a systematic review and agenda for future research. Electronic Markets. 2016 May;26:173-94.

    [17]  Chen DQ, Preston DS, Swink M. How the use of big data analytics affects value creation in supply chain management. Journal of management information systems. 2015 Oct 2;32(4):4-39.

    [18]  Gunasekaran  A,  Papadopoulos  T,  Dubey  R,  Wamba  SF,  Childe  SJ,  Hazen  B,  Akter  S.  Big  data  and predictive analytics for supply chain and organizational performance. Journal of Business Research. 2017 Jan 1;70:308-17.

    [19]  Bag S, Wood LC, Xu L, Dhamija P, Kayikci Y. Big data analytics as an operational excellence approach to enhance  sustainable  supply  chain  performance.  Resources,  Conservation  and  Recycling.  2020  Feb 1;153:104559.

    Cite This Article As :
    A., Alshaimaa. , Ahmed, Zenat. , M., Mahmoud. Applying Big Data Analytics to Retail for Improved Supply Chain Visibility. Journal of American Journal of Business and Operations Research, vol. 4, no. 1, 2021, pp. 39-46. DOI: https://doi.org/10.54216/AJBOR.040104
    A., A. Ahmed, Z. M., M. (2021). Applying Big Data Analytics to Retail for Improved Supply Chain Visibility. Journal of American Journal of Business and Operations Research, 4( 1), 39-46. DOI: https://doi.org/10.54216/AJBOR.040104
    A., Alshaimaa. Ahmed, Zenat. M., Mahmoud. Applying Big Data Analytics to Retail for Improved Supply Chain Visibility. Journal of American Journal of Business and Operations Research 4, no. 1 (2021): 39-46. DOI: https://doi.org/10.54216/AJBOR.040104
    A., A. , Ahmed, Z. , M., M. (2021) . Applying Big Data Analytics to Retail for Improved Supply Chain Visibility. Journal of American Journal of Business and Operations Research , 4( 1) , 39-46 . DOI: https://doi.org/10.54216/AJBOR.040104
    A. A. , Ahmed Z. , M. M. [2021]. Applying Big Data Analytics to Retail for Improved Supply Chain Visibility. Journal of American Journal of Business and Operations Research. 4( 1): 39-46. DOI: https://doi.org/10.54216/AJBOR.040104
    A., A. Ahmed, Z. M., M. "Applying Big Data Analytics to Retail for Improved Supply Chain Visibility," Journal of American Journal of Business and Operations Research, vol. 4, no. 1, pp. 39-46, 2021. DOI: https://doi.org/10.54216/AJBOR.040104