American Journal of Business and Operations Research

Journal DOI

https://doi.org/10.54216/AJBOR

Submit Your Paper

2692-2967ISSN (Online) 2770-0216ISSN (Print)

Volume 8 , Issue 2 , PP: 08-15, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

An Enhanced Deep Learning Technique to Measure the Impact of Cryptocurrency on the World Payment system using Random Forest

Fatma M. Talaat 1 *

  • 1 Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh, Egypt - (fatma.nada@ai.kfs.edu.eg)
  • Doi: https://doi.org/10.54216/AJBOR.080201

    Received: May 11, 2022 Accepted: December 09, 2022
    Abstract

    Cryptocurrency is a technology that uses an encrypted peer-to-peer network to facilitate digital barter. Bitcoin, the first and most popular cryptocurrency, is paving the way as a disruptive technology to long-standing and unchanging financial payment systems. While cryptocurrencies are unlikely to replace traditional fiat currency, they have the potential to alter how Internet-connected global markets interact with one another, removing the restrictions that exist around traditional national currencies and exchange rates. Technology advances at a breakneck pace, and a technology's success is almost entirely determined by the market it tries to improve. Cryptocurrencies have the potential to change digital trade marketplaces by enabling a fee-free trading mechanism. A SWOT analysis of Bitcoin is offered, which highlights some of the recent events and movements that may have an impact on whether Bitcoin contributes to a paradigm change in economics. Cryptocurrency is a relatively new payment option, and users are naturally drawn to it because it offers privacy. To measure the impact of cryptocurrency on the world payment system, we use a Cryptocurrency extra data – Bitcoin. The proposed algorithm uses Random Forest Algorithm for prediction. The RFPA has achieved a 0.073 MSE. The RFPA has achieved the best results as it can handle huge datasets with a lot of dimensionality. It improves the model's accuracy and eliminates the problem of overfitting. When compared to other algorithms, it takes less time to train.

    Keywords :

    Cryptocurrency , Bitcoin , Exchange Rates , Random Forest , Machine Learning

    References

    [1]  Kelly, B. (2014). The Bitcoin Big Bang : How Alternative Currencies Are About to Change the 

    World.

    [2]  Team, B. (2016, January 20). Understanding Bitcoin's Growth in 2015. Retrieved from Bitpay 

    Website: https://blog.bitpay.com/understanding-bitcoins-growth-in-2015/

    [3]  King, R. S. (2013, December 17). By reading this article, you’re mining bitcoins. Retrieved from 

    Quartz.com Website: http://qz.com/154877/by-reading-this-page-you-are-mining-bitcoins/

    [4]  Magro,  P.  (2016,  July  16).  What  Greece  can  learn  from  bitcoin  adoption  in  Latin  America. 

    Retrieved July 2016, from International Business Times Website: http://www.ibtimes.co.uk/whatgreece-can-learn-bitcoinadoption-latin-america-1511183

    [5]  Desjardins, J. (2016, January 5). It’s Official: Bitcoin was the Top Performing Currency of 2015. 

    Retrieved  from  The  Money  Project  Website:  http://money.visualcapitalist.com/its-officialbitcoin-was-the-topperforming-currency-of-2015/

    [6]  Bitcoin:  A  New  Global  Economy.  (2015,  August  4).  Retrieved  July  2016,  from  BitPay,  Inc. 

    Website: https://blog.bitpay.com/bitcoin-a-new-global-economy/ 

    [7]  Magro,  P.  (2016,  July  16).  What  Greece  can  learn  from  bitcoin  adoption  in  Latin  America. 

    Retrieved July 2016, from International Business Times Website: http://www.ibtimes.co.uk/whatgreece-can-learn-bitcoinadoption-latin-america-1511183 

    [8]  Hileman, G. (2016, January 28). State of Bitcoin and Blockchain 2016: Blockchain Hits Critical 

    Mass. Retrieved from Coindesk Website: http://www.coindesk.com/state-of-bitcoin-blockchain-2016/ 

    [9]  Bearman,  J.  (2015,  May).  The  Untold  Story  of  Silk  Road,  Pt.  1.  Retrieved  from  Wired.com 

    Website: https://www.wired.com/2015/04/silk-road-1/ 

    [10]  Kaur, K., and Pathak, A.,  E-Payment System on E-Commerce in India. International Journal of 

    Engineering Research and Applications, 5(2), 79–87, 2015. 

    [11]  Shah, Z. A. (2017). Digital Payment System: Problems and Prospects. EPRA International Journal 

    of  Economic  and  Business  Review,  05(8),  194-201,  e-ISSN:  2347-9671|  p-ISSN:  2349-0. 

    www.eprawisdom.comwww.eprawisdom.com%0Awww.eprawisdom.com 

    [12]  Francis, J. C. (2019). Bitcoins, Cryptocurrencies and BlockChains. SSRN Electronic Journal, 1–

    20. https://doi.org/10.2139/ssrn.3371051

    [13]  Hileman, G., and Rauchs, M. (2017). 2017 Global Cryptocurrency Benchmarking Study. SSRN 

    Electronic Journal. https://doi.org/10.2139/ssrn.2965436

    [14]  https://www.kaggle.com/yamqwe/cryptocurrency-extra-data 

    bitcoin?select=full_data__1__2021.csv 

    [15]  Talaat,  F.M.,  Gamel,  S.A.  RL  based  hyper-parameters  optimization  algorithm  (ROA)  for 

    convolutional  neural  network.  J  Ambient  Intell  Human  Comput  (2022). 

    https://doi.org/10.1007/s12652-022-03788-y  

    [16]  F. M. Talaat, H. A. Ali, M. S. Saraya, and A. I. Saleh, Effective scheduling algorithm for load 

    balancing in fog environment using CNN and MPSO.  Knowledge and Information Systems, 64(3), 

    773–797, 2022.

    [17]  F. M. Talaat,  Effective prediction and resource allocation method (EPRAM) in fog computing 

    environment for smart healthcare system. Multimedia Tools and Applications, 2022.

    [18]  Fatma  M  Talaat,  Effective  deep  q-networks  (edqn)  strategy  for  resource  allocation  based  on 

    optimized reinforcement learning algorithm, Multimedia Tools and Applications, 1–17, 2022.

    [19]  Fatma  M.  Talaat,  Younger  Dementia  Disease  Detection  and  Classification  Using  Machine 

    Learning  and  Group  Grey  Wolf  Optimization,  preprint,  December  2022, 

    https://www.researchgate.net/publication/366570523_Younger_Dementia_Disease_Detection_a

    nd_Classification_Using_Machine_Learning_and_Group_Grey_Wolf_Optimization 

    [20]  Fatma  M.  Talaat,  Hagar  Gazy,  etc.,  Enhanced  Routing  Technique  for  Military  Dog  Robot, 

    https://www.researchgate.net/publication/366570514_Enhanced_Routing_Technique_for_Milita

    ry_Dog_Robot

    [21]  Talaat, F.M.; Gamel, S.A., Predicting the impact of no. Of authors on no. Of citations of research 

    publications based on neural networks. J. Ambient.  Intell.  Humaniz. Comput.  2022,ahead  -ofprint.https://doi.org/10.1007/s12652-022-03882-1

    Cite This Article As :
    M., Fatma. An Enhanced Deep Learning Technique to Measure the Impact of Cryptocurrency on the World Payment system using Random Forest. American Journal of Business and Operations Research, vol. , no. , 2022, pp. 08-15. DOI: https://doi.org/10.54216/AJBOR.080201
    M., F. (2022). An Enhanced Deep Learning Technique to Measure the Impact of Cryptocurrency on the World Payment system using Random Forest. American Journal of Business and Operations Research, (), 08-15. DOI: https://doi.org/10.54216/AJBOR.080201
    M., Fatma. An Enhanced Deep Learning Technique to Measure the Impact of Cryptocurrency on the World Payment system using Random Forest. American Journal of Business and Operations Research , no. (2022): 08-15. DOI: https://doi.org/10.54216/AJBOR.080201
    M., F. (2022) . An Enhanced Deep Learning Technique to Measure the Impact of Cryptocurrency on the World Payment system using Random Forest. American Journal of Business and Operations Research , () , 08-15 . DOI: https://doi.org/10.54216/AJBOR.080201
    M. F. [2022]. An Enhanced Deep Learning Technique to Measure the Impact of Cryptocurrency on the World Payment system using Random Forest. American Journal of Business and Operations Research. (): 08-15. DOI: https://doi.org/10.54216/AJBOR.080201
    M., F. "An Enhanced Deep Learning Technique to Measure the Impact of Cryptocurrency on the World Payment system using Random Forest," American Journal of Business and Operations Research, vol. , no. , pp. 08-15, 2022. DOI: https://doi.org/10.54216/AJBOR.080201