375 407
Full Length Article
American Journal of Business and Operations Research
Volume 8 , Issue 1, PP: 40-46 , 2022 | Cite this article as | XML | Html |PDF

Title

COVID-19 vaccine choice using the multi-criteria decision making method under uncertainty

Authors Names :   Ahmed Abdelaziz   1 *     Alia Nabil Mahmoud   2  

1  Affiliation :  Nova University in Lisbon, Information management school, Lisbon, Portugal

    Email :  D20190535@novaims.unl.pt


2  Affiliation :  Nova University in Lisbon, Information management school, Lisbon, Portugal

    Email :  M20190508@novaims.unl.pt



Doi   :   https://doi.org/10.54216/AJBOR.080104

Received: May 28, 2022 Accepted: December 10, 2022

Abstract :

COVID-19, a coronavirus pandemic unlike any seen before, is in a state of flux over the planet. Since the COVID-19 pandemic now poses a serious danger to all nations, it is critical that policymakers find the most effective response possible. The coronavirus is difficult to eradicate, however the COVID-19 vaccination may help with that. Everyone is wondering which vaccination would be best for them. Multi-criteria decision-making (MCDM) is an excellent method for assessing this maze. As a result, we have suggested a cutting-edge MCDM method for choosing COVID-19 vaccinations. The primary objective of this work is to deliver a technique for MCDM. In this investigation, we present a unique hybrid model that combines the strengths of the neutrosophic Analytic Hierarchy Process (N-AHP) and the neutrosophic VIKOR technique. Using the N-AHP, we can quantify the importance of the criterion, and using the N-VIKOR method, we can prioritize our options for interventions.

Keywords :

MCDM; Neutrosophic Sets; Uncertainty; Single Valued Neutrosophic Sets; 

References :

[1]  I. M. Hezam, M. K. Nayeem, A. Foul, and A. F. Alrasheedi, “COVID-19 Vaccine: A neutrosophic MCDM 

approach for determining the priority groups,” Results in physics, vol. 20, p. 103654, 2021.

[2]  C.  Kahraman,  B.  Oztaysi,  and  S.  Cevik  Onar,  “Single  &  interval-valued  neutrosophic  AHP  methods: 

Performance analysis of outsourcing law firms,”  Journal of Intelligent & Fuzzy Systems, vol. 38, no. 1, 

pp. 749–759, 2020.

[3]  M. Junaid, Y. Xue, M. W. Syed, J. Z. Li, and M. Ziaullah, “A neutrosophic ahp and topsis framework for 

supply chain risk assessment in automotive industry of Pakistan,”  Sustainability, vol. 12, no. 1, p. 154, 

2019.

[4]  L.  Yang  et  al.,  “COVID-19:  immunopathogenesis  and  Immunotherapeutics,”  Signal  transduction  and 

targeted therapy, vol. 5, no. 1, pp. 1–8, 2020.

[5]  T. T. Le  et al., “The COVID-19 vaccine development landscape,”  Nat Rev Drug Discov, vol. 19, no. 5, 

pp. 305–306, 2020.

[6]  K.  Yuki,  M.  Fujiogi,  and  S.  Koutsogiannaki,  “COVID-19  pathophysiology:  A  review,”  Clinical 

immunology, vol. 215, p. 108427, 2020.

[7]  T. P. Velavan and C. G. Meyer, “The COVID‐19 epidemic,”  Tropical medicine & international health, 

vol. 25, no. 3, p. 278, 2020.

[8]  Z. Andreadakis, A. Kumar, R. G. Román, S. Tollefsen, M. Saville,  and S. Mayhew, “The COVID-19 

vaccine development landscape,” Nat Rev Drug Discov, vol. 19, no. 5, pp. 305–306, 2020.

[9]  M.  Ciotti,  M.  Ciccozzi,  A.  Terrinoni,  W.-C.  Jiang,  C.-B.  Wang,  and  S.  Bernardini,  “The  COVID-19 

pandemic,” Critical reviews in clinical laboratory sciences, vol. 57, no. 6, pp. 365–388, 2020.

[10]  X. Cao, “COVID-19: immunopathology and its implications for therapy,”  Nature reviews immunology, 

vol. 20, no. 5, pp. 269–270, 2020.

[11]  J. H. Beigel  et al., “Remdesivir for the treatment of Covid -19,”  New England Journal of Medicine, vol. 

383, no. 19, pp. 1813–1826, 2020.

[12]  A. Sotoudeh-Anvari, “The applications of MCDM methods in COVID-19 pandemic: A state of the art 

review,” Applied Soft Computing, p. 109238, 2022.

[13]  P.-H. Nguyen, J.-F. Tsai, T.-T. Dang, M.-H. Lin, H.-A. Pham, and K.-A. Nguyen, “A hybrid spherical 

fuzzy  MCDM  approach  to  prioritize  governmental  intervention  strategies  against  the  COVID -19 

pandemic: A case study from Vietnam,” Mathematics, vol. 9, no. 20, p. 2626, 2021.

[14]  R.  Ghosh  and  F.  N.  Saima,  “Resilience  of  commercial  banks  of  Bangladesh  to  the  shocks  caused  by 

COVID-19  pandemic:  an  application  of  MCDM-based  approaches,”  Asian  Journal  of  Accounting 

Research, 2021.

[15]  M.  A.  Alsalem  et  al.,  “Multi-criteria  decision-making  for  coronavirus  disease  2019  applications:  A 

theoretical analysis review,” Artificial Intelligence Review, pp. 1–84, 2022.

[16]  N. Ahmad, M. G. Hasan, and R. K. Barbhuiya, “Identification and prioritization of strategies to tackle 

COVID-19  outbreak:  A  group-BWM  based  MCDM  approach,”  Applied  soft  computing,  vol.  111,  p. 

107642, 2021.

[17]  C.-L. Lin, J. K. C. Chen, and H.-H. Ho, “BIM for smart hospital management during COVID-19 Using 

MCDM,” Sustainability, vol. 13, no. 11, p. 6181, 2021.

[18]  N. Aydin and S. Seker, “Determining the location of isolation hospitals for COVID‐19 via Delphi‐based 

MCDM method,” International Journal of Intelligent Systems, vol. 36, no. 6, pp. 3011–3034, 2021.

[19]  J. Hu, L. Pan, and X. Chen, “An interval neutrosophic projection-based VIKOR method for selecting 

doctors,” Cognitive Computation, vol. 9, no. 6, pp. 801–816, 2017.

[20]  J. Wang, G. Wei, and M. Lu, “An extended VIKOR method for multiple criteria group decision making 

with triangular fuzzy neutrosophic numbers,” Symmetry, vol. 10, no. 10, p. 497, 2018.

[21]  Y.-H. Huang, G.-W. Wei, and C. Wei, “VIKOR method for interval neutrosophic multiple attribute group 

decision-making,” Information, vol. 8, no. 4, p. 144, 2017.

[22]  H.  Eroğlu  and  R.  Şahin,  “A  neutrosophic  VIKOR  method-based  decision-making  with  an  improved 

distance measure and score function: case study of selection for renewable energy alternatives,” Cognitive 

Computation, vol. 12, no. 6, pp. 1338–1355, 2020.

[23]  E. Bolturk and C. Kahraman, “A novel interval-valued neutrosophic AHP with cosine similarity measure,” 

Soft Computing, vol. 22, no. 15, pp. 4941–4958, 2018.

[24]  M. Yucesan and M. Gul, “Failure modes and effects analysis based on neutrosophic analytic hierarchy 

process: method and application,” Soft Computing, vol. 25, no. 16, pp. 11035–11052, 2021.

[25]  N. M. Radwan, M. B. Senousy, and M. R. Alaa El Din, Neutrosophic AHP multi criteria decision making 

method applied on the selection of learning management system. Infinite Study, 2016.


Cite this Article as :
Style #
MLA Ahmed Abdelaziz, Alia Nabil Mahmoud. "COVID-19 vaccine choice using the multi-criteria decision making method under uncertainty." American Journal of Business and Operations Research, Vol. 8, No. 1, 2022 ,PP. 40-46 (Doi   :  https://doi.org/10.54216/AJBOR.080104)
APA Ahmed Abdelaziz, Alia Nabil Mahmoud. (2022). COVID-19 vaccine choice using the multi-criteria decision making method under uncertainty. Journal of American Journal of Business and Operations Research, 8 ( 1 ), 40-46 (Doi   :  https://doi.org/10.54216/AJBOR.080104)
Chicago Ahmed Abdelaziz, Alia Nabil Mahmoud. "COVID-19 vaccine choice using the multi-criteria decision making method under uncertainty." Journal of American Journal of Business and Operations Research, 8 no. 1 (2022): 40-46 (Doi   :  https://doi.org/10.54216/AJBOR.080104)
Harvard Ahmed Abdelaziz, Alia Nabil Mahmoud. (2022). COVID-19 vaccine choice using the multi-criteria decision making method under uncertainty. Journal of American Journal of Business and Operations Research, 8 ( 1 ), 40-46 (Doi   :  https://doi.org/10.54216/AJBOR.080104)
Vancouver Ahmed Abdelaziz, Alia Nabil Mahmoud. COVID-19 vaccine choice using the multi-criteria decision making method under uncertainty. Journal of American Journal of Business and Operations Research, (2022); 8 ( 1 ): 40-46 (Doi   :  https://doi.org/10.54216/AJBOR.080104)
IEEE Ahmed Abdelaziz, Alia Nabil Mahmoud, COVID-19 vaccine choice using the multi-criteria decision making method under uncertainty, Journal of American Journal of Business and Operations Research, Vol. 8 , No. 1 , (2022) : 40-46 (Doi   :  https://doi.org/10.54216/AJBOR.080104)