360 234
Full Length Article
Volume 7 , Issue 2, PP: 62-73 , 2020

Title

Introduction to NeutroRings

Authors Names :   Agboola A.A.A   1 *  

1  Affiliation :  Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria

    Email :  agboolaaaa@funaab.edu.ng



Doi   :  10.5281/zenodo.3877121


Abstract :

The objective of this paper is to introduce the concept of NeutroRings by considering three NeutroAxioms (NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and NeutroDistributivity (multiplication over addition)). Several interesting results and examples on NeutroRings, NeutroSubgrings, NeutroIdeals, NeutroQuotientRings and NeutroRingHomomorphisms are presented. It is shown that the 1st isomorphism theorem of the classical rings holds in the class of NeutroRings.

Keywords :

Neutrosophy , NeutroGroup , NeutroSubgroup , NeutroRing , NeutroSubring , NeutroIdeal , Neutro-QuotientRing and NeutroRingHomomorphism.

References :

[1]Adeleke, E.O., Agboola, A.A.A. and Smarandache, F., Refined Neutrosophic Rings I, International Journal of Neutrosophic Science, vol. 2(2), pp. 77-81, 2020. (DOI:10.5281/zenodo.3728222)[2] Adeleke E.O., Agboola A.A.A. and Smarandache F., Refined Neutrosophic Rings II, International Journalof Neutrosophic Science, vol. 2(2), pp. 89-94, 2020. (DOI:10.5281/zenodo.3728235)[3] Agboola, A.A.A., Introduction to NeutroGroups, International Journal of Neutrosophic Science,Volume6 , Issue 1, pp. 41-47 , 2020[4] Agboola, A.A.A., On Refined Neutrosophic Quotient Groups, International Journal of Neutrosophic Science, vol. 5 (2), pp. 76-82, 2020. DOI:10.5281/zenodo.3828609.[5] Agboola, A.A.A., Ibrahim, M.A., Adeleke, E.O. and Akinleye, S.A., On Refined Neutrosophic Algebraic Hyperstructures I, International Journal of Neutrosophic Science, vol. 5 (1), pp. 29-37, 2020.DOI:10.5281/zenodo.3789007.[6] Agboola, A.A.A., Ibrahim, M.A. and Adeleke, E.O., Elementary Examination of NeutroAlgebras andAntiAlgebras viz-a-viz the Classical Number Systems, International Journal of Neutrosophic Science,vol. 4 (1), pp. 16-19, 2020. DOI:10.5281/zenodo.3752896.

[7] Agboola, A.A.A., On Refined Neutrosophic Algebraic Structures, Neutrosophic Sets and Systems,vol.10, pp. 99-101, 2015.[8] Agboola, A.A.A., Akinola, A.D. and Oyebola, O.Y, Neutrosophic Rings I, International Journal of Mathematical Combinatorics, vol. 4, pp. 1-14, 2011.[9] Agboola, A.A.A., Adeleke, E.O. and Akinleye, S.A., Neutrosophic Rings II, International Journal ofMathematical Combinatorics, vol. 2, pp. 1-8, 2012.[10] Agboola, A.A.A., Akwu, A.O. and Oyebo, Y.T., Neutrosophic Groups and Neutrosopic Subgroups, International Journal of Mathematical Combinatorics, vol. 3, pp. 1-9, 2012.[11] Agboola, A.A.A and Davvaz, B., On Neutrosophic Canonical Hypergroups and Neutrosophic Hyperrings, Neutrosophic Sets and Systems, vol. 2, pp. 34-41, 2014.[12] Agboola, A.A.A., Davvaz, B. and Smarandache, F., Neutrosophic Quadruple Hyperstructures, Annals ofFuzzy Mathematics and Informatics, vol. 14, pp. 29-42, 2017.[13] Akinleye, S.A., Smarandache, F. and Agboola, A.A.A., On Neutrosophic Quadruple Algebraic Structures, Neutrosophic Sets and Systems, vol. 12, pp. 122-126, 2016.[14] Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 20, pp. 87-96, 1986.[15] Deli, I., Broumi, S. and Smarandache, F., On neutrosophic refined sets and their applications in medicaldiagnosis, Journal of New Theory, Vol. 6, pp. 88-98, 2015.[16] Gilbert, L. and Gilbert, J., Elements of Modern Algebra, Eighth Edition, Cengage Learning, USA, 2015.[17] Ibrahim, M.A., Agboola, A.A.A., Adeleke, E.O. and Akinleye, S.A., On Refined NeutrosophicHypervector Spaces, International Journal of Neutrosophic Science, vol. 4 (1), pp. 20-35, 2020.DOI:10.5281/zenodo.3752906.[18] Liu, P. and Wang, Y., Multiple attribute decision-making method based on single-valued neutrosophicnormalized weighted Bonferroni mean, Neural Computing and Applications, Vol. 25 (7-8), pp. 2001-2010, 2014.[19] Smarandache, F., Introduction to NeutroAlgebraic Structures, in Advances of Standard and NonstandardNeutrosophic Theories, Pons Publishing House Brussels, Belgium, Ch. 6, pp. 240-265, 2019.[20] Smarandache, F., Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures (revisited),Neutrosophic Sets and Systems, vol. 31, pp. 1-16, 2020. DOI: 10.5281/zenodo.3638232.[21] Smarandache, F., NeutroAlgebra is a Generalization of Partial Algebra, International Journal of Neutrosophic Science, vol. 2 (1), pp. 08-17, 2020.[22] Smarandache, F. and Pramanik, S., New Neutrosophic Sets via Neutrosophic Topological Spaces, InOperational Research; Eids.; Pons Editions: Brussels, Belgium, Vol. I, pp. 189-209, 2017.[23] Smarandache, F. and Pramanik, S., Neutrosophic crisp sets via neutrosophic crisp topological spaces,Neutrosophic Sets and Systems, Vol. 13, pp. 96-104, 2016.[24] Smarandache, F. and Pramanik, S., On Generalized Closed Sets and Generalized PreClosed Sets in Neutrosophic Topological Spaces, Mathematics, Vol. 7(1), pp. 1-12, 2019.DOI:DOI.ORG/10.3390/math7010001.[25] Smarandache, F., A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic Set,Neutrosophic Probability, (3rd edition), American Research Press, Rehoboth, 2003.http://fs.gallup.unm.edu/eBook-Neutrosophic4.pdf.[26] Smarandache, F., n-Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress inPhysics, USA, vol. 4, pp. 143-146, 2013.[27] Smarandache, F., (T,I,F)- Neutrosophic Structures, Neutrosophic Sets and Systems, vol. 8, pp. 3-10,2015.

[28] Vasantha Kandasamy, W.B. and Smarandache, F., Neutrosophic Rings, Hexis, Phoenix, Arizona, 2006.http://fs.gallup.unm.edu/NeutrosophicRings.pdf[29] Ye, J. and Zhang, Q.S., Single-valued neutrosophic similarity measures for multiple attribute decisionmaking, Neutrosophic Sets and Systems, Vol. 2, pp. 48-54, 2014.[30] Zadeh, L.A., Fuzzy Sets, Information and Control, Vol. 8, pp. 338-353, 1965.