369 211
Full Length Article
Volume 6 , Issue 2, PP: 80-86 , 2020

Title

AH-Subspaces in Neutrosophic Vector Spaces

Authors Names :   Mohammad Abobala   1 *  

1  Affiliation :  Faculty of Science, Tishreen University, Lattakia, Syria

    Email :  mohammadabobala777@gmail.com



Doi   :  10.5281/zenodo.3841628


Abstract :

In this paper, we introduce the concept of AH-subspace of a neutrosophic vector space and AHS-linear transformations. We study elementary properties of these concepts such as Kernel, AH-Quotient, and dimension.

Keywords :

Neutrosophic vector space , AH-supspace , AHS-subspace , AH-Quotient

References :

[1]  Abobala, M.,  "On Some Special Substructures of Neutrosophic Rings and Their Properties", International Journal of Neutrosophic Science", Vol 4, pp.72-81, 2020.

[2]  Abobala, M., "On Some Special Substructures of Refined Neutrosophic Rings", International Journal of     Neutrosophic Science, Vol 5, pp.59-66, 2020.

[3]  Abobala, M,. "Classical Homomorphisms Between Refined Neutrosophic Rings and Neutrosophic Rings", International Journal of Neutrosophic Science, Vol 5, pp.72-75, 2020.

[4]  Adeleke, E.O., Agboola, A.A.A., and Smarandache, F., "Refined Neutrosophic Rings I", International Journal of  Neutrosophic Science, Vol 2, pp. 77-81, 2020.

[5]  Agboola, A.A.A,. and Akinleye, S.A,. "Neutrosophic Vector Spaces", Neutrosophic Sets and Systems, Vol 4 , pp 9-17, 2014.

[6]  Agboola, A.A.A,. Akwu, A.D,. and Oyebo, Y.T,. "Neutrosophic Groups and Subgroups", International .J .Math.Combin, Vol 3, pp. 1-9, 2012.

[7]  Agboola, A.A.A., Akinola, A.D., and Oyebola, O.Y.," NeutrosophicRings I ", International J.Mathcombin, vol(4), pp 1-14, 2011.

[8]  Bera, T and Mahapatra, N. K., “On Neutrosophic Soft Field”, IJMTT, 56(7), pp.472-494, 2018.            

[9]  Bera, T and Mahapatra, N. K., “On Neutrosophic Soft Linear Spaces”, Fuzzy Information and Engineering., 9, pp.299-324, 2017. 

[10] Injrou, S., "Linear Algebra 2 ", Tishreen University Press, pp.180-230, 2015.

[11] Kandasamy, V.W.B,. and Smarandache, F., "Some Neutrosophic Algebraic Structures and Neutrosophic N-Algebraic Structures", Hexis, Phonex, Arizona 2006.

[12] Smarandache, F.,”NeutroAlgebra is a Generalization of Partial Algebra”, International Journal of Neutrosophic Science (IJNS), Vol. 2, No. 1, pp. 08-17, 2020.

[13]Smarandache, F., “Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures, in Advances of Standard and Nonstandard Neutrosophic Theories,” Pons Publishing House Brussels, Belgium, Ch. 6, pp. 240-265, 2019. 

[14]Smarandache, F.,”Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures (revisited)”, Neutrosophic Sets and Systems, vol. 31, pp. 1-16, 2020. DOI: 10.5281/zenodo.3638232.