415 237
Full Length Article
Volume 5 , Issue 2, PP: 76-82 , 2020

Title

On Refined Neutrosophic Quotient Groups

Authors Names :   A.A.A. Agboola   1 *  

1  Affiliation :  Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria.

    Email :  agboolaaaa@funaab.edu.ng



Doi   :  10.5281/zenodo.3828609


Abstract :

This paper is devoted to the study of refined neutrosophic quotient groups. It is shown that the classical isomorphism theorems of groups do not hold for the refined neutrosophic groups. Moreover, the existence of classical morphisms between refined neutrosophic groups G(I1, I2and neutrosophic groups G(Iis established.

Keywords :

Neutrosophy , neutrosophic group , neutrosophic subgroup , refined neutrosophic group , refined
neutrosophic subgroup , refined neutrosophic group homomorphism

References :

[1] A.A.A. Agboola, On Refined Neutrosophic Algebraic Structures, Neutrosophic Sets and Systems, vol.10,pp. 99-101, 2015.[2] A.A.A. Agboola, A.D. Akinola and O.Y. Oyebola, Neutrosophic Rings I, Int. J. of Math. Comb., vol. 4,pp. 1-14, 2011.[3] A.A.A. Agboola, E.O. Adeleke and S.A. Akinleye, Neutrosophic Rings II, Int. J. of Math. Comb., vol. 2,pp. 1-8, 2012.[4] A.A.A. Agboola, Akwu A.O. and Y.T. Oyebo, Neutrosophic Groups and Neutrosopic Subgroups, Int. J.of Math. Comb., vol. 3, pp. 1-9, 2012.[5] E.O. Adeleke, A.A.A. Agboola and F. Smarandache, Refined Neutrosophic Rings I, International Journalof Neutrosophic Science (IJNS), vol. 2(2), pp. 77-81, 2020. (DOI:10.5281/zenodo.3728222)[6] E.O. Adeleke, A.A.A. Agboola and F. Smarandache, Refined Neutrosophic Rings II, International Journalof Neutrosophic Science (IJNS), vol. 2(2), pp. 89-94, 2020. (DOI:10.5281/zenodo.3728235)[7] T. Bera and N.K. Mahapatra, On neutrosophic normal soft groups, Int. J. Appl. Comput. Math, Vol. 2(4),2016. (DOI:10.1007/s40819-016-0284-2).[8] T. Bera and N.K. Mahapatra, Introduction to neutrosophic soft groups, Neutrosophic Sets and Systems,Vol. 13, pp. 118-127, 2016. (DOI: 10.5281/zenodo.570845)[9] T. Bera and N.K. Mahapatra, Study of the group theory in neutrosophic soft sense, Asia Mathematica,Vol. 3(2), pp. 1-18, 2019.[10] F. Smarandache(2003), A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, NeutrosophicSet, Neutrosophic Probability, (3rd edition), American Research Press, Rehoboth,http://fs.gallup.unm.edu/eBook-Neutrosophic4.pdf.[11] F. Smarandache, n-Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress inPhysics, USA, vol. 4, pp. 143-146, 2013.[12] F. Smarandache, (T,I,F)- Neutrosophic Structures, Neutrosophic Sets and Systems, vol. 8, pp. 3-10, 2015.[13] W.B. Vasantha Kandasamy and F. Smarandache, Neutrosophic Rings, Hexis, Phoenix, Arizona, 2006http://fs.gallup.unm.edu/NeutrosophicRings.pdf