398 238
Full Length Article
Volume 4 , Issue 1, PP: 47-71 , 2020


Exponential Laws and Aggregation Operators on Neutrosophic Cubic Sets

Authors Names :   Majid Khan   1 *     Ismat Beg   2     Muhammad Gulistan   3  

1  Affiliation :  Hazara University, Mansehra, Pakistan

    Email :  majid_swati@yahoo.com

2  Affiliation :  Lahore School of Economics, Lahore, Pakistan

    Email :  gulistanmath@hu.edu.pk

3  Affiliation :  Hazara University, Mansehra, Pakistan

    Email :  ibeg@lahoreschool.edu.pk

Doi   :  10.5281/zenodo.3758466

Abstract :

This paper presents operational laws along with their cosine measure for the numbers whose base is an interval value and study their properties. Consequent upon these definitions and properties neutrosophic cubic weighted exponential averaging and dual neutrosophic cubic weighted exponential averaging aggregation operators are defined. A multi attribute decision making method is then developed for proposed aggregation operators. An example is constructed as an application. The validity of multi attribute decision making method is also tested and comparative analysis is provided to compare these aggregation operators with existing results.

Keywords :

Neutrosophic cubic number; dual neutrosophic cubic number; neutrosophic cubic exponential weighted averaging; dual neutrosophic cubic exponential weighted averaging ; multi attribute decision making.

References :

[1]       L. A. Zadeh. Fuzzy sets, Inform. Control, 8; 338-353, 1965.

[2]       L. A. Zadeh. Outline of a new approach to the analysis of complex system and decision processes interval-valued fuzzy sets, IEEE Trans, 1968.

[3]       I. B. Turksen. Interval-valued strict preference with Zadeh triples, Fuzzy Sets and Systems, 78;183-195, 1996.

[4]       K. Atanassov. Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20:87-96, 1986.

[5]       K. Atanassov; G. Gargov. Interval-valued intuitionistic fuzzy sets, Fuzzy Sets Syst., 31:343-349,     1989.

[6]       Y. B. Jun; C. S. Kim; K. O.Yang. Cubic sets, Ann. Fuzzy Math. Inform,  1, 83-98, 2012.

[7]       K. Kumar; H. Garg. TOPSIS method based on the connection number of set pair analysis   under interval-valued intuitionistic fuzzy set environment, Computational and Applied Mathematics, 37(2); 1319-1329, 2018.

[8]       G. Kaur; H. Garg. Cubic intuitionistic fuzzy aggregation operators, International Journal    for Uncertainty Quantification, 8(5); 405-427, 2018.

[9]       H. Garg; S. Singh. A novel triangular interval type-2 intuitionistic fuzzy sets and their aggregation operators, Iranian Journal of Fuzzy Systems, 15(5); 69-93, 2018.

[10]     Z. S. Xu, “Intuitionistic fuzzy aggregation operators”, IEEE Transactions on Fuzzy Systems, 15; 1179-1187, 2007.

[11]     Z. S. Xu; R. R. Yager. Some geometric aggregation operators based on intuitionistic fuzzy sets, International Journal of General Systems, 35; 417-433, 2006.

[12]     D. Rani and H. Garg. Distance measures between the complex intuitionistic fuzzy sets and its applications to the decision - making process, International Journal for Uncertainty Quantification, 7(5); 423- 439, 2017.

[13]     F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability", American Research Press, Rehoboth, NM, 1999.

[14]     F. Smarandache. NeutroAlgebra is a Generalization of Partial Algebra, International Journal of Neutrosophic Science,  Volume 2 , Issue 1, pp.08-17 , 2020.

[15]     H. Wang; F. Smarandache; Y.Q. Zhang. Interval neutrosophic sets and logic, Theory and   Application in Computing, Hexis, Phoenix, AZ, 2005.

[16]     Y. B. Jun; F. Smarandache; C.S. Kim. Neutrosophic cubic sets, New Math. Nat. Comput.    8:41 SPC/INSTRUCTION FILE JSK-151001R0-1108,  2015.

[17]     Nancy; H. Garg. Novel single-valued neutrosophic decision making operators under frank norm operations and its application, International Journal for Uncertainty Quantification, 6(4), 361-375, 2016.

[18]     P. Liu;  Y. Wang. Multiple attribute decision-making method based on single-valued neutrosophic normalized weighted Bonferroni mean, Neural Computing & Applications, 25  (7-8); 2001-2010, 2014.

[19]     X. D. Peng; J. G. Dai. A bibliometric analysis of neutrosophic set: Two decades review from 1998--2017. Artificial Intelligence Review, 2018. https://doi.org/10.1007/s10462-018-9652-0.

[20]     H. Garg; Nancy. Multi-criteria decision-making method based on prioritized muirhead mean aggregation operator under neutrosophic set environment, Symmetry, 10(7), 280, 2018.   

[21]     S. Jha; R. Kumar; J.M Chatterjee; M. Khari; N. Yadav; F. Smarandache, “Neutrosophic soft set decision making for stock trending analysis”, Evolving Systems, 1-7.            

[22]     H. Garg; Nancy. Some hybrid weighted aggregation operators under neutrosophic set environment and their applications to multicriteria decision-making,  Applied Intelligence,  1-18, 2018

[23]     P. Biswas; S. Pramanik; B.C Giri. Topsis method for multiattribute group decision-making under single-valued neutrosophic environment”, Neural Computing and Applications, 27(3);   727-737.

[24]     M. Abdel-Basset; Y. Zhou; M. Mohamed; V. Chang. A group decision making framework based on neutrosophic vikor approach for e-government website evaluation. Journal of Intelligent & Fuzzy Systems, 34(6); 40213-4224, 2018.

[25]     J. Ye. Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods”, SpringerPlus, 5; 1488, 2016.

[26]     J. Zhan; M. Khan; M. Gulistan;A. Ali. Applications of neutrosophic cubic sets in multi-criteria decision making, Int. J. Uncertain. Quanti, 7; 377-394, 2017.

[27]     D. Banerjee; B.C. Giri; S. Pramanik; F. Smarandache. GRA for multi attribute decision making in neutrosophic cubic set environment. Neutrosophic Sets Syst., 15; 64-73, 2017.

[28]     Z. Lu; J. Ye; Cosine measures of neutrosophic cubic sets for multiple attribute decision-making, Symmetry,  9; 2017.

[29]     S. Pramanik; S. Dalapati; S. Alam; T.K. Roy; F.  Smarandache. Neutrosophic cubic MCGDM method based on similarity measure, Neutrosophic Sets Syst., 16; 44-56, 2017.

[30]     M. Khan; M. Gulistan; M. Khan; F.Smaradache. Neutrosophic cubic Einstein geometric aggregation operators with application to multi-creiteria decision making theory method, Symmetry, 11, 2019. 

[31]     M. Khalid; Y. B. Jun; M. M. Takallo; N.A.Khalid. Magnification of MBJ-Neutrosophic Translation on G-Algerbra, Volume 2 , Issue 1, pp. 27-37 , 2020

[32]     P.  Schweizer, Uncertainty: two probabilities for the three states of neutrosophy, International Journal of Neutrosophic Science, Volume 2 , Issue 1, pp.18-26 , 2020.   

[33]     X. Wang; E. Triantaphyllou. Ranking irregularities when evaluating alternatives by using some electre methods, Omega - International Journal of Management Science, 36; 45-63, 2008.