International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 3 , Issue 2 , PP: 89-107, 2020 | Cite this article as | XML | Html | PDF | Full Length Article

Image and Inverse Image of Neutrosophic Cubic Sets in UP-Algebras under UP-Homomorphisms

Metawee Songsaeng 1 * , Aiyared Iampan 2

  • 1 Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand - (metawee.faith@gmail.com)
  • 2 Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand - (aiyared.ia@up.ac.th)
  • Doi: https://doi.org/10.54216/IJNS.030201

    Abstract

    The concept of a neutrosophic cubic set in a UP-algebra was introduced by Songsaeng and Iampan [Neu-trosophic cubic set theory applied to UP-algebras, 2019]. In this paper, we define the image and inverse image of a neutrosophic cubic set in a non-empty set under any function and study the image and inverse image of a neutrosophic cubic UP-subalgebra (resp., neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutrosophic cubic UP-ideal, neutrosophic cubic strong UP-ideal) of a UP-algebra under some UP-homomorphisms.

    Keywords :

    UP-algebra, UP-homomorphism, neutrosophic cubic UP-subalgebra, neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutrosophic cubic UP-ideal, neutrosophic cubic strong UP-ideal

    References

    [1] Al-Tahan, M.; Davvaz, B. Neutrosophic ℵ-ideals (ℵ-subalgebras) of subtraction algebra. Int. J. Neutro-sophic Sci. 2020, 3(1), 44–53.

    [2] Ansari, M. A.; Haidar, A.; Koam, A. N. A. On a graph associated to UP-algebras. Math. Comput. Appl. 2018, 23(4), 61.

    [3] Ansari, M. A.; Koam, A. N. A.; Haider, A. Rough set theory applied to UP-algebras. Ital. J. Pure Appl. Math. 2019, 42, 388–402.

    [4] Dokkhamdang, N.; Kesorn, A.; Iampan, A. Generalized fuzzy sets in UP-algebras. Ann. Fuzzy Math. Inform. 2018, 16(2), 171–190.

    [5] Guntasow, T.; Sajak, S.; Jomkham, A.; Iampan, A. Fuzzy translations of a fuzzy set in UP-algebras. J. Indones. Math. Soc. 2017, 23(2), 1–19.

    [6] Iampan, A. Multipliers and near UP-filters of UP-algebras. J. Discrete Math. Sci. Cryptography (in press).

    [7] Iampan, A. A new branch of the logical algebra: UP-algebras. J. Algebra Relat. Top. 2017, 5(1), 35–54.

    [8] Iampan, A. Introducing fully UP-semigroups. Discuss. Math., Gen. Algebra Appl. 2018, 38(2), 297–306.

    [9] Iampan, A. The UP-isomorphism theorems for UP-algebras. Discuss. Math., Gen. Algebra Appl. 2019, 39(1), 113–123.

    [10] Ibrahim, M. A.; Agboola, A. A. A.; Adeleke, E. O.; Akinleye, S. A. Introduction to neutrosophic subtraction algebra and neutrosophic subtraction semigroup. Int. J. Neutrosophic Sci. 2020, 2(1), 47–62.

    [11] Iqbal, R.; Zafar, S.; Sardar, M. S. Neutrosophic cubic subalgebras and neutrosophic cubic closed ideals of B-algebras. Neutrosophic Sets Syst. 2016, 14, 47–60.

    [12] Jun, Y. B.; Kim, C. S.; Yang, K. O. Cubic sets. Ann. Fuzzy Math. Inform. 2012, 4(1), 83–98.

    [13] Jun, Y. B.; Kim, S. J.; Smarandache, F. Interval neutrosophic sets with applications in BCK/BCI-algebra. Axioms 2018, 7(2), 23–35.

    [14] Jun, Y. B.; Smarandache, F.; Bordbar, H. Neutrosophic N -structures applied to BCK/BCI-algebras. Inform. 2017, 8(4), 128.

    [15] Jun, Y. B.; Smarandache, F.; Kim, C. S. Neutrosophic cubic sets. New Math. Nat. Comput. 2017, 13(1), 41–54.

    [16] Kaijae, W.; Poungsumpao, P.; Arayarangsi, S.; Iampan, A. UP-algebras characterized by their anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras. Ital. J. Pure Appl. Math. 2016, 36, 667–692.

    [17] Kesorn, B.; Maimun, K.; Ratbandan, W.; Iampan, A. Intuitionistic fuzzy sets in UP-algebras. Ital. J. Pure Appl. Math. 2015, 34, 339–364.

    [18] Khalid, M.; Khalid, N. A.; Khalid, H.; Broumi, S. Multiplicative interpretation of neutrosophic cubic set on B-algebra. Int. J. Neutrosophic Sci. 2020, 1(2), 64–73.

    [19] Khan, M.; Anis, S.; Smarandache, F.; Jun, Y. B. Neutrosophic N -structures and their applications in semigroups. Ann. Fuzzy Math. Inform. 2017, 14(6), 583–598.

    [20] Mordeson, J. N.; Malik, D. S.; Kuroki, N. Fuzzy Semigroups, volume 131; Springer, 2012.

    [21] Prabpayak, C.; Leerawat, U. On ideals and congruences in KU-algebras. Sci. Magna 2009, 5(1), 54–57.

    [22] Satirad, A.; Mosrijai, P.; Iampan, A. Formulas for finding UP-algebras. Int. J. Math. Comput. Sci. 2019, 14(2), 403–409.

    [23] Satirad, A.; Mosrijai, P.; Iampan, A. Generalized power UP-algebras. Int. J. Math. Comput. Sci. 2019, 14(1), 17–25.

    [24] Senapati, T.; Jun, Y. B.; Shum, K. P. Cubic set structure applied in UP-algebras. Discrete Math. Algo-rithms Appl. 2018, 10(4), 1850049.

    [25] Senapati, T.; Muhiuddin, G.; Shum, K. P. Representation of UP-algebras in interval-valued intuitionistic fuzzy environment. Ital. J. Pure Appl. Math. 2017, 38, 497–517.

    [26] Smarandache, F. A Unifying Field in Logic: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neu-trosophic Probability; American Research Press, Rehoboth, NM, 1999.

    [27] Somjanta, J.; Thuekaew, N.; Kumpeangkeaw, P.; Iampan, A. Fuzzy sets in UP-algebras. Ann. Fuzzy Math. Inform. 2016, 12(6), 739–756.

    [28] Songsaeng, M.; Iampan, A. N -fuzzy UP-algebras and its level subsets. J. Algebra Relat. Top. 2018, 6(1), 1–24.

    [29] Songsaeng, M.; Iampan, A. Fuzzy proper UP-filters of UP-algebras. Honam Math. J. 2019, 41(3), 515–530.

    [30] Songsaeng, M.; Iampan, A. Neutrosophic cubic set theory applied to UP-algebras. Thai J. Math. (ac-cepted).

    [31] Songsaeng, M.; Iampan, A. Neutrosophic set theory applied to UP-algebras. Eur. J. Pure Appl. Math. 2019, 12(4), 1382–1409.

    [32] Songsaeng, M.; Iampan, A. Neutrosophic sets in UP-algebras by means of interval-valued fuzzy sets. J. Int. Math. Virtual Inst. 2020, 10(1), 93–122.

    [33] Songsaeng, M.; Iampan, A. A novel approach to neutrosophic sets in UP-algebras. J. Math. Computer Sci. 2020, 21(1), 78–98.

    [34] Sripaeng, S.; Tanamoon, K.; Iampan, A. On anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras. J. Inf. Optim. Sci. 2018, 39(5), 1095–1127.

    [35] Taboon, K.; Butsri, P.; Iampan, A. A cubic set theory approach to UP-algebras. J. Interdiscip. Math.(accepted).

    [36] Tanamoon, K.; Sripaeng, S.; Iampan, A. Q-fuzzy sets in UP-algebras. Songklanakarin J. Sci. Technol. 2018, 40(1), 9–29.

    [37] Wang, H.; Smarandache, F.; Zhang, Y. Q.; Sunderraman, R. Interval Neutrosophic Sets and logic: Theory and Applications in Computing; Hexis, Phoenix, Ariz, USA, 2005.

    [38] Zadeh, L. A. Fuzzy sets. Inf. Cont. 1965, 8, 338–353.

    [39] Zadeh, L. A. The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 1975, 8, 199–249.

    Cite This Article As :
    Songsaeng, Metawee. , Iampan, Aiyared. Image and Inverse Image of Neutrosophic Cubic Sets in UP-Algebras under UP-Homomorphisms. International Journal of Neutrosophic Science, vol. , no. , 2020, pp. 89-107. DOI: https://doi.org/10.54216/IJNS.030201
    Songsaeng, M. Iampan, A. (2020). Image and Inverse Image of Neutrosophic Cubic Sets in UP-Algebras under UP-Homomorphisms. International Journal of Neutrosophic Science, (), 89-107. DOI: https://doi.org/10.54216/IJNS.030201
    Songsaeng, Metawee. Iampan, Aiyared. Image and Inverse Image of Neutrosophic Cubic Sets in UP-Algebras under UP-Homomorphisms. International Journal of Neutrosophic Science , no. (2020): 89-107. DOI: https://doi.org/10.54216/IJNS.030201
    Songsaeng, M. , Iampan, A. (2020) . Image and Inverse Image of Neutrosophic Cubic Sets in UP-Algebras under UP-Homomorphisms. International Journal of Neutrosophic Science , () , 89-107 . DOI: https://doi.org/10.54216/IJNS.030201
    Songsaeng M. , Iampan A. [2020]. Image and Inverse Image of Neutrosophic Cubic Sets in UP-Algebras under UP-Homomorphisms. International Journal of Neutrosophic Science. (): 89-107. DOI: https://doi.org/10.54216/IJNS.030201
    Songsaeng, M. Iampan, A. "Image and Inverse Image of Neutrosophic Cubic Sets in UP-Algebras under UP-Homomorphisms," International Journal of Neutrosophic Science, vol. , no. , pp. 89-107, 2020. DOI: https://doi.org/10.54216/IJNS.030201