410 224
Full Length Article
Volume 2 , Issue 1, PP: 27-37 , 2020

Title

Magnification of MBJ-Neutrosophic Translation on G-Algerbra

Authors Names :   Mohsin Khalid   1 *     Young Bae Jun   2     Mohammad Mohseni Takallo   3     Neha Andaleeb Khalid   4  

1  Affiliation :  Dept. of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan

    Email :  mk4605107@gmail.com


2  Affiliation :  Dept. of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea

    Email :  skywine@gmail.com


3  Affiliation :  Dept. of Mathematics, Shahid Beheshti University, Tehran, Iran

    Email :  mohammad.mohseni1122@gmail


4  Affiliation :  Dept. of Mathematics, Lahore Collage For Women University, Lahore, Pakistan

    Email :  nehakhalid97@gmail.com



Doi   :  10.5281/zenodo.3715484


Abstract :

In this article, we define the MBJ-neutrosophic magnified translation (MBJNMT) on G-algebra which is the combination of multiplication and translation and study significant results of MBJ-neutrosophic ideal and MBJ-neutrosophic subalgebra by using the notion of MBJ-neutrosophic magnified translation. We investigate the conversion of MBJ-neutrosophic ideal and MBJ-neutrosophic subalgebra with one another and use the idea of  intersection and union to produce some important results of MBJ-neutrosophic magnified translation.

Keywords :

G-algebra , MBJ-neutrosophic magnified translation

References :

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, 8, pp.338-353, 1965.

 

[2] K. Iseki, S. Tanaka, “An introduction to the theory of BCK-algebras,” Math Japonica, 23, pp.1-20, 1978.

 

[3] K. Iseki, “On BCI-algebras,” Math. Seminar Notes, 8, pp.125-130,1980.

[4] K. J. Lee, Y. B. Jun and M. I. Doh, “Fuzzy translations and fuzzy multiplications of BCK/BCI-algebras,”                Commun. Korean Math. Soc. 24, No. 3, pp.353-360, 2009.

 

[5] M. A. A. Ansari and M. Chandramouleeswaran, “Fuzzy translations of fuzzy q-ideals of q-algebras,” International Journal of Pure and Applied Mathematics, Vol.92, No. 5, pp.657- 667, 2014.

 

[6] T. Priya and T. Ramachandran, “A note on fuzzy PS-ideals in PS-algebra and its level subsets,” International Journal of Advanced Mathematical Sciences, Vol. 2, No. 2, pp.101-106, 2014.

 

[7] R. K. Bandaru and N. Rafi, “On G-algebras,” Scientia Magna, 8, pp.1-7, 2012.

 

[8] S. Lekkoksung, “On fuzzy magnifed translation in ternary hemirings, International Mathematical Forum,” vol. 7, No. 21, pp.1021-1025, 2012.

 

[9] T. Senapati, M. Bhowmik and M. Pal, “Atanassov’s intuitionistic fuzzy translations of intuitionistic fuzzy H-ideals in BCK/BCI-algebras,” Notes on Intuitionistic Fuzzy Sets, 19, pp.32-47, 2013.

 

[10] C. Jana, T. Senapati, M. Bhowmik and M. Pal, “On intuitionistic fuzzy G-subalgebras,” Fuzzy Information and Engineering, 7, pp.195-209, 2015,.

 

[11] T. Senapati, M. Bhowmik and M. Pal, B. Davvaz, “Fuzzy translations of fuzzy H-ideals in BCK/BCI-algebras,” Journal of the Indonesian Mathematical Society, 21, pp.45-58, 2015.

 

[12] K. T. Atanassov, “Intuitionistic fuzzy sets Theory and Applications,” Studies in Fuzziness and Soft Computing, Vol. 35, Physica-Verlag, Heidelberg, New York, 1999.

 

[13] T. Senapati, “Translation of intuitionistic fuzzy B-algebras” Fuzzy Information and Engineering, 7, pp.389-404,2015.

[14] Y. H. Kim, T. E. Jeong, “Intuitionistic fuzzy structure of B-algebras,” Journal of Applied Mathematics and Computing, 22, pp.491-500, 2006.

 

[15] T. Senapati, M. Bhowmik and M. Pal, “Fuzzy dot subalgebras and fuzzy dot ideals of B-algebras,” Journal of Uncertain Systems, 8, pp.22-30,2014.

 

[16] T. Priya and T. Ramachandran, “Fuzzy translation and fuzzy multiplication on PS-algebras,” International  Journal of Innovation in Science and Mathematics Vol. 2, 5, 2014.

 

[17] M. Chandramouleeswaran, P. Muralikrishna and S. Srinivasan, “Fuzzy translation and fuzzy multiplication in BF/BG-algebras,” Indian Journal of Science and Technology, Vol. 6 (9), September, 2013.

 

[18] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math. 24, 3, pp.287-297,2005.

 

[19] F. Smarandache, “A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set,” Neutrosophic Probability, 1999. (American Reserch Press), Rehoboth.

 

[20] Y. B. Jun, F. Smarandache and M. A. Ozturk, “Commutative falling neutrosophic ideals in BCK-algebras,” Neutrosophic Sets and Systems, vol. 20, pp.44-53, 2018. http://doi.org/10.5281 /zenodo.1235351.

 

[21] C. H. Park, “Neutrosophic ideal of Subtraction Algebras,” Neutrosophic Sets and Systems, vol. 24, pp.36-45, 2019.  DOI: 10.5281/zenodo.2593913.

 

[22] M. Khalid, R. Iqbal and S. Broumi, “Neutrosophic soft cubic Subalgebras of G-algebras,” Neutrosophic Sets and Systems, 28, pp.259-272, 2019. 10.5281/zenodo.3382552.

 

[23] M. Khalid, R. Iqbal, S. Zafar and H. Khalid, “Intuitionistic Fuzzy Translation and Multiplication of G-algebra,” The Journal of Fuzzy Mathematics vol. 27, No. 3, pp.543-559,2019.

 

[24] M. Khalid, N. A. Khalid and S. Broumi, “T-Neutrosophic Cubic Set on BF-Algebra,” Neutrosophic Sets and Systems, 2020. http://doi.org/10.5281/zenodo.3639470.

 

[25] M. M. Takallo, R. Borzooei. and Y. B. Jun, “MBJ-neutrosophic structures and its applications in BCK/BCI-algebras,” Neutrosophic Sets and Systems. 23, pp.72-84, 2018. 10.5281/zenodo.2155211.

 

[26] M. Khalid, N. A. Khalid, H. Khalid and S. Broumi, “Multiplicative Interpretation of  Neutrosophic Cubic Set on B-Algebra,” International Journal of Neutrosophic Science, Vol1,issue1,pp.64-73,2020. http://doi.org/10.5281/zenodo.3679517.

 

[27] M. Khalid, N. A. Khalid and R. Iqbal, “MBJ-neutrosophic T-ideal on B-algebra,” International Journal of Neutrosophic Science, pp.29-39, 2020.http://doi.org/10.5281/ zenodo.3679495.