International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 23 , Issue 3 , PP: 131-139, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

MBJ-Neutrosophic WI Ideals in Lattice Wajsberg Algebra

V. S. N. Malleswari 1 * , M. Babu Prasad 2 , Kothuru Bhagya Lakshmi 3 , M. Aruna kumari 4 , M. Sireesha 5

  • 1 Department of Freshman Engineering, PVP Siddhartha Institute of Technology, Vijayawada, India - (vsnm.maths@gmail.com)
  • 2 Department of Freshmen Engineering, NRI Institute of Technology, Pothavarappadu, Vijayawada, India. - (babuprasad@nriit.edu.in)
  • 3 Department of Mathematics, KKR&KSR Institute of Technology&Sciences, Guntur, India - (mblakshmi12@gmail.com)
  • 4 Department of Mathematics, KKR&KSR Institute of Technology&Sciences, Guntur, India - (arunakumaridarsanapu@gmail.com)
  • 5 Department of Mathematics, RV Institute of Technology,Chebrolu, Guntur Dt, India - (sireeshamamidala85@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.230311

    Received: August 25, 2023 Revised: November 17, 2023 Accepted: January 27, 2024
    Abstract

    In this study, we introduce the concepts of MBJ-Neutrosophic WI-ideal and MBJ-Neutrosophic lattice ideal of lattice Wajsberg algebras. We demonstrate that every MBJ-Neutrosophic WI-ideal of lattice Wajsberg algebra is an MBJ-Neutrosophic lattice ideal of lattice Wajsberg algebra. Additionally, we talk about its opposite. Furthermore, we discover that in lattice H-Wajsberg algebra, every MBJ-Neutrosophic lattice ideal is an MBJ-Neutrosophic WI-ideal.

    Keywords :

    Wajsberg algebra (WA) , Lattice Wajsberg algebra(LWA) , WI-ideal , MBJ-Neutrosophic WI-ideal , MBJ-Neutrosophic lattice ideal.

    References

    [1] Wajsberg. M:Beitragezum Metaaussagenkalkul l, Monat. Mat. phys. 42(1935) page 240.

    [2] Rose.A and Rosser. J. B, Fragments of many valued statement calculi, Transaction of American Mathematical Society87,(1958), 1-53.

    [3] Font. J. M, Rodriguez. A. J and Torrens. A, Wajsberg algebras, STOCHASTICA VolVIII, No 1, (1984),     5-31.

    [4] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.

    [5] K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1) (1986) 87-96.

    [6] K.T.Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61(2) (1994) 137-142.

    [7] M. Basheer Ahamed, A. Ibrahim, Fuzzy implicative filters of Lattice Wajsberg algebras, Advances in Fuzzy Mathematics,6, 235-243 (2011)

    [8] A.Ibrahim and C.Shajitha Begum, On WI-Ideals Of lattice Wajsberg algebras, Global Journal of Pure and Applied Mathematics, 13(10) (2017) 7237-7254.

    [9] A.Ibrahim and C.Shajitha Begum, Fuzzy and normal fuzzy WI-ideals of lattice Wajsberg algebras, International Journal of Mathematical Archive, 8(11) (2017) 122-130.

    [10] C.C.Chang, Algebraic analysis of many-valued logics, Transactions of the Am. Math. Soc., 88 (1958) 467- 490.

    [11]  C.C.Chang, A new proof of the completeness of the Lukasiewicz axioms, Transactions of the Am. Math. Soc., 93 (1959) 74-80.

    [12] Y.B.Jun and K.H.Kim, Intuitionistic fuzzy ideals in BCK-algebras, Internat. J. Math. and Math. Sci., 24(12) (2000) 839-849.

    [13] Y.B.Jun and C.H.Park, Ideals of PSEUDO MV- algebras based on vague set theory, Iranian Journal Of Fuzzy Systems, 6(2) (2009) 31-45.

    [14] F. Smarandache (2003), Definition of Neutrosophic Logic – A Generalization of the Intuitionistic Fuzzy Logic, Proceedings of the Third Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT 2003, September 10-12, 2003, Zittau, Germany; University of Applied Sciences at Zittau/Goerlitz, 141-146.

    [15] F. Smarandache (2002a), A Unifying Field in Logics: Neutrosophic Logic, in MultipleValued Logic/An International journal,Vol.8, No.3, 385-438, 2002.

    [16] F. Smarandache (2002b), Neutrosophy, A New Branch of Philosophy, in MultipleValued Logic / An International Journal, Vol. 8, No. 3, 297-384, 2002.

    [17] M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, MBJ-neutrosophic structures and its applications in BCK/BCI-algebras, Neutrosophic sets and systems Vol. 23, 2018.

    [18] M.Basheer Ahamed and A.Ibrahim, Anti fuzzy implicative filters in lattice W-algebras, International Journal of Computational Science and Mathematics, 4(1) (2012) 49-56.

    Cite This Article As :
    S., V.. , Babu, M.. , Bhagya, Kothuru. , Aruna, M.. , Sireesha, M.. MBJ-Neutrosophic WI Ideals in Lattice Wajsberg Algebra. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 131-139. DOI: https://doi.org/10.54216/IJNS.230311
    S., V. Babu, M. Bhagya, K. Aruna, M. Sireesha, M. (2024). MBJ-Neutrosophic WI Ideals in Lattice Wajsberg Algebra. International Journal of Neutrosophic Science, (), 131-139. DOI: https://doi.org/10.54216/IJNS.230311
    S., V.. Babu, M.. Bhagya, Kothuru. Aruna, M.. Sireesha, M.. MBJ-Neutrosophic WI Ideals in Lattice Wajsberg Algebra. International Journal of Neutrosophic Science , no. (2024): 131-139. DOI: https://doi.org/10.54216/IJNS.230311
    S., V. , Babu, M. , Bhagya, K. , Aruna, M. , Sireesha, M. (2024) . MBJ-Neutrosophic WI Ideals in Lattice Wajsberg Algebra. International Journal of Neutrosophic Science , () , 131-139 . DOI: https://doi.org/10.54216/IJNS.230311
    S. V. , Babu M. , Bhagya K. , Aruna M. , Sireesha M. [2024]. MBJ-Neutrosophic WI Ideals in Lattice Wajsberg Algebra. International Journal of Neutrosophic Science. (): 131-139. DOI: https://doi.org/10.54216/IJNS.230311
    S., V. Babu, M. Bhagya, K. Aruna, M. Sireesha, M. "MBJ-Neutrosophic WI Ideals in Lattice Wajsberg Algebra," International Journal of Neutrosophic Science, vol. , no. , pp. 131-139, 2024. DOI: https://doi.org/10.54216/IJNS.230311