

MBJ-Neutrosophic WI Ideals in Lattice Wajsberg Algebra

V. S. N. Malleswari^{1,*}, M. Babu Prasad², Kothuru Bhagya Lakshmi³, M. Aruna kumari⁴, M. Sireesha⁵

¹Department of Freshman Engineering, PVP Siddhartha Institute of Technology, Vijayawada, India.
 ²Department of Freshmen Engineering, NRI Institute of Technology, Pothavarappadu, Vijayawada, India.
 ³Department of Mathematics, KKR&KSR Institute of Technology&Sciences, Guntur, India.
 ⁴Department of Mathematics, KKR&KSR Institute of Technology&Sciences, Guntur, India.
 ⁵Department of Mathematics, RV Institute of Technology, Chebrolu, Guntur Dt, India.

Emails: vsnm.maths@gmail.com; babuprasad@nriit.edu.in; mblakshmi12@gmail.com; arunakumaridarsanapu@gmail.com; sireeshamamidala85@gmail.com

Abstract

In this study, we introduce the concepts of MBJ-Neutrosophic WI-ideal and MBJ-Neutrosophic lattice ideal of lattice Wajsberg algebras. We demonstrate that every MBJ-Neutrosophic WI-ideal of lattice Wajsberg algebra is an MBJ-Neutrosophic lattice ideal of lattice Wajsberg algebra. Additionally, we talk about its opposite. Furthermore, we discover that in lattice H-Wajsberg algebra, every MBJ-Neutrosophic lattice ideal is an MBJ-Neutrosophic WI-ideal.

Keywords: Wajsberg algebra (WA); Lattice Wajsberg algebra(LWA); WI-ideal; MBJ-Neutrosophic WI-ideal; MBJ-Neutrosophic lattice ideal.

1. Introduction

Different kinds of uncertainties are faced in a wide variety of real-world circumstances and in many complex systems, including biological, behavioral, and chemical ones. The fuzzy set was first presented by L.A. Zadeh [4] in 1965 to handle uncertainties in various practical applications, and K. Atanassov introduced the intuitionistic fuzzy set on a universe X in 1983 as a generalization of the fuzzy set. By extending the concepts of classic set, (intuitionistic) fuzzy set, and interval valued (intuitionistic) fuzzy set, Smarandache ([14], [15], and [16]) created the concept of neutrosophic set. The membership functions for truth, falsehood, and indeterminacy in the neutrosophic set are fuzzy sets. We use the interval valued fuzzy set as a basis for thinking about a generalization of neutrosophic set.

The idea of Wajsberg algebra was first put out by Mordchaj Wajsberg [1] in 1935.Lattice valued logic is developing as a study area that has a significant impact on the advancement of algebraic logic, computer science, and artificial intelligence technologies. In 1984, Font etal.[3] proposed Wajsberg algebra's lattice structure, examined its features, and expanded Wajsberg algebra as a substitute model for the infinite-valued Lukasiewicz logic.

Lattice Wajsberg algebras are an algebraic structure that are created by combining a lattice with a Wajsberg algebra. Font, Rodriguez, and Torrens [3] presented the idea of lattice Wajsberg algebras in 1984 and analyzed some of its features. Filter theory is crucial for the overall advancement of lattice Wajsberg algebras. In a lattice Wajsberg algebra, they presented the idea of implicative filters and looked into their characteristics. The concepts of fuzzy implicative and anti-fuzzy implicative filters of lattice Wajsberg algebras were proposed by Basheer Ahamed and Ibrahim [7,18], who also established several properties using examples. Another significant advancement in lattice Wajsberg algebras is the theory of ideals. The Wajsberg implicative ideal (WI-ideal) of lattice Wajsberg algebra was presented by the authors [8], who also deduced various features.

DOI: https://doi.org/10.54216/IJNS.230311

Received: August 25, 2023 Revised: November 17, 2023 Accepted: January 27, 2024

In this paper, we introduce the notions of MBJ-Neutrosophic WI-ideal and MBJ-Neutrosophic lattice ideal of lattice Wajsberg algebras. We show that every MBJ-Neutrosophic WI-ideal of lattice Wajsberg algebra is a MBJ-Neutrosophic lattice ideal of lattice Wajsberg algebra. Also, we discuss its converse part. Further, we obtain every MBJ-Neutrosophic lattice ideal is an MBJ-Neutrosophic WI-ideal in lattice H-Wajsberg algebra.

2. Preliminaries

2.1. Definition [3]: Let $(L, \to, *, 1)$ be an algebra with an unary operation *, and a binary operation \to is called a Wajsberg algebra (W-algebra) if and only if it satisfies the following axioms for all $x, y, z \in L$

- (W1) $1 \rightarrow x = x$
- (W2) $x \rightarrow y \rightarrow y \rightarrow z \rightarrow x \rightarrow z = 1$
- (W3) $x \rightarrow y \rightarrow y = (y \rightarrow x) \rightarrow x$
- $(W4) (x* \rightarrow y*) \rightarrow y \rightarrow x = 1$

2.2. Proposition [3]: The W-algebra $(L, \rightarrow, *, 1)$ satisfies the following equations and implications for all $x, y, z \in L$

- $(1) x \rightarrow x = 1$
- (2) If $x \rightarrow y = y \rightarrow x = 1$, then x = y
- (3) $x \to 1 = 1$
- (4) $x \rightarrow y \rightarrow x = 1$
- (5) If $x \rightarrow y = y \rightarrow z = 1$, then $x \rightarrow z = 1$
- (6) $x \rightarrow y \rightarrow z \rightarrow x \rightarrow z \rightarrow y = 1$
- $(7) \ x \to y \to z = y \to (x \to z)$
- (8) $x \to 0 = x \to 1^* = x^*$
- $(9) (x^*)^* = x$
- $(10) x^* \rightarrow y^* = y \rightarrow x$
- (11) If $x \le y$ then $y \to z \le x \to z$
- (12) $(x \lor y) *= (x * \land y *)$
- $(13) (x \land y) *= (x * \lor y *)$
- $(14) (x \lor y) \rightarrow z = (x \rightarrow z) \land (y \rightarrow z)$
- (15) $x \rightarrow (y \land z) = (x \rightarrow y) \land (x \rightarrow z)$
- $(16) (x\rightarrow y) \lor (y\rightarrow x)=1$
- (17) $x \rightarrow (y \lor z) = (x \rightarrow y) \lor (x \rightarrow z)$
- (18) $(x \land y) \rightarrow z = (x \rightarrow z) \lor (y \rightarrow z)$
- (19) $(x \land y) \lor z = (x \lor z) \land (y \lor z)$
- $(20) (x \land y) \rightarrow z = (x \rightarrow y) \lor (x \rightarrow z)$
- (21) $x \le y \rightarrow z$ if and only if $y \le x \rightarrow z$
- (22) If $x \le y$ then $z \rightarrow x \le z \rightarrow y$

- **2.3. Definition [3]: The** W-algebra L is called a Lattice W-algebra if it satisfies the following conditions for all $x, y \in L$,
- (1) A partial ordering " \leq " on L such that $x \leq y$ if and only if $x \rightarrow y = 1$
- (2) $x \lor y = (x \to y) \to y$

(3)
$$x \wedge y = ((x^* \rightarrow y^*) \rightarrow y^*) *$$

Thus $(L, \vee, \wedge, *, \rightarrow, 0, 1)$ is a Lattice W-algebra with lower bound 0 and an upper bound 1.

2.4. Definition [17]: Let X be a non-empty set. A MBJ-neutrosophic set of the form $A = \{\langle \varsigma; M_A(\varsigma), \widetilde{B_A}(\varsigma), J_A(\varsigma)/\varsigma \in X\} \rangle \}$ where M_A and J_A are fuzzy sets in X, which are called a truth membership function and a false membership function, respectively and $\widetilde{B_A}$ is an IVF set in X which is called an indeterminate interval valued membership function. For the sake of simplicity, we shall use the symbol $A = \{M_A, \widetilde{B_A}, J_A\}$ for the MBJ-Neutrosophic set $A = \{\langle \varsigma; M_A(\varsigma), \widetilde{B_A}(\varsigma), J_A(\varsigma)/\varsigma \in X\} \rangle \}$.

In an MBJ-Neutrosophic set $A = (M_A, \widetilde{B_A}, J_A)$ in X we take $\widetilde{B_A}: X \to [I], \varsigma \to [B_A^-(\varsigma), B_A^+(\varsigma)]$ with $B_A^-(\varsigma) = B_A^+(\varsigma)$ then $A = (M_A, \widetilde{B_A}, J_A)$ is a neutrosophic set in X.

- **2.5. Definition [3].** Let L be a lattice. An ideal I of L is a nonempty subset of L is called a lattice ideal, if it satisfies the following axioms for all $x, y \in I$
- (i) $x \in I$, $y \in L$ and $y \le x$ imply $y \in I$
- (ii) $x, y \in I$ implies $x \lor y \in I$
- **2.6. Definition** [7]. Let A be a lattice Wajsberg algebra. Let I be a nonempty subset of A, then I is called WI ideal of lattice Wajsberg algebra A satisfies,
- (i) $0 \in I$
- (ii) $(x \rightarrow y) * \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in A$.
 - 3. MBJ-Neutrosophic WI-ideals in Lattice Wajsberg algebra:
- **3.1. Definition:** A MBJ-N set $A = (M_A, \widetilde{\mathcal{B}_A}, J_A)$ in a LWA Lis called a MBJ-N WI-ideal of L if following attributes are true.

$$(\forall \varsigma_1 \in L) (M_A(0) \ge M_A(\varsigma_1), \widetilde{\mathcal{B}}_A(0) \ge \widetilde{\mathcal{B}}_A(\varsigma_1), J_A(0) \le J_A(\varsigma_1))$$
 (1)

And
$$(\forall \varsigma_1, \varsigma_2 \in L)$$

$$\begin{pmatrix}
M_A(\varsigma_1) \ge \min\{M_A((\varsigma_1 \to \varsigma_2)'), M_A(\varsigma_2)\} \\
\widetilde{\mathcal{B}_A}(\varsigma_1) \ge \min\{\widetilde{\mathcal{B}_A}((\varsigma_1 \to \varsigma_2)'), \widetilde{\mathcal{B}_A}(\varsigma_2)\} \\
J_A(\varsigma_1) \le \max\{J_A((\varsigma_1 \to \varsigma_2)'), J_A(\varsigma_2)\}
\end{pmatrix}$$
(2)

The set of all MBJ-NWI-ideals of L is denoted by MBJ-NWI(L)

3.2. Example:

Let $A = \{0, a, b, c, d, r, s, t, 1\}$ be a set with Figure (1) as a partial ordering. Define a quasi-complement "*" and a binary operation " \rightarrow " on A as in Table (1) and Table(2).

Table 1:

ς ₁	χ* ς ₁ *		
0	1		
a	t		
b	b		
c	r		
d	d		
r	c		
S	b		
t	a		
1	0		

Table 2:

X	00 0	A a	В	Сс	d	r	S	t	1
0	1	1	1	1	1	1	1	1	1
a	t	1	1	t	1	1	t	1	1
b	b	t	1	S	t	1	S	t	1
c	r	r	r	1	1	1	1	1	1
d	d	r	r	t	1	1	t	1	1
r	c	d	r	S	t	1	S	t	1
S	b	b	b	r	r	r	1	1	1
t	a	b	b	d	r	r	t	1	1
1	0	a	b	c	d	r	S	t	1

Define V and A operations on A as follows,

$$(\varsigma_1 \lor \varsigma_2) = (\varsigma_1 \rightarrow \varsigma_2) \rightarrow \varsigma_2,$$

$$(\varsigma_1 \land \varsigma_2) = ((\varsigma_1^* \rightarrow \varsigma_2^*) \rightarrow \varsigma_2^*)^*$$
 for all $\varsigma_1, \varsigma_2 \in A$.

Then $(A, V, \Lambda, *, 0, 1)$ is a lattice Wajsberg algebra.

Consider an MBJ-neutrosophic set $S = (M_A, \widetilde{B_A}, J_A)$ on A as

$$M_A(\varsigma_1) = \begin{cases} 1 & \text{if } \varsigma_1 \in \{0, b\} \text{for every } \varsigma_1 \in A \\ 0.6 & \text{otherwise for all } \varsigma_1 \in A \end{cases}$$

$$\tilde{B}_A(\varsigma_1) = \begin{cases} [0.5, 0.6] \ if \ \varsigma_1 \in \{0, b\} for \ every \ \varsigma_1 \in A \\ [0.3, 0.4] \ otherwise \ for \ all \ \varsigma_1 \in A \end{cases}$$

$$J_A(\varsigma_1) = \begin{cases} 0 \ if \ \varsigma_1 \in \{0,b\} for \ every \ \varsigma_1 \in A \\ 0.4 \ otherwise \ for \ all \ \varsigma_1 \in A \end{cases}$$

Then S is an MBJ-neutrosophic WI-ideal.

In the same Example 3.2, let us consider an MBJ-neutrosophic set $S = (M_A, \widetilde{\mathcal{B}}_A, J_A)$ on A as

$$M_A(\varsigma_1) = \begin{cases} 1 \ if \ \varsigma_1 \in \{a,b\} for \ every \ \varsigma_1 \in A \\ 0.42 \ otherwise \ for \ all \ \varsigma_1 \in A \end{cases}$$

$$\tilde{B}_A(\varsigma_1) = \begin{cases} [0.8, 0.9] \ if \ \varsigma_1 \in \{a, b\} for \ every \ \varsigma_1 \in A \\ [0.3, 0.4] \ otherwise \ for \ all \ \varsigma_1 \in A \end{cases}$$

$$J_A(\varsigma_1) = \begin{cases} 0 & \text{if } \varsigma_1 \in \{a, b\} \text{for every } \varsigma_1 \in A \\ 0.46 & \text{otherwise for all } \varsigma_1 \in A \end{cases}$$

Then S is not a MBJ-neutrosophic WI-ideal of A for

$$M_A(t) < min\{M_A((t \to b)^*), M_A(b)\}$$

$$\widetilde{\mathcal{B}}_{A}(t) < rmin\{\widetilde{\mathcal{B}}_{A}((t \to b)^{*}), \widetilde{\mathcal{B}}_{A}(b)\}$$

$$J_A(t) > max\{J_A((t \to b)^*), J_A(b)\}$$

3.3. Proposition:

Every MBJ-NWI-ideal $A=(M_A,\widetilde{\mathcal{B}_A},J_A)$ of L accomplish the following assertions.

$$(\forall \varsigma_{1}, \varsigma_{2} \in L) \left(\varsigma_{1} \leq \varsigma_{2} \Rightarrow \begin{cases} M_{A}(\varsigma_{1}) \geq M_{A}(\varsigma_{2}) \\ \widetilde{\mathcal{B}_{A}}(\varsigma_{1}) \geq \widetilde{\mathcal{B}_{A}}(\varsigma_{2}) \\ J_{A}(\varsigma_{1}) \leq J_{A}(\varsigma_{2}) \end{cases} \right)$$
(3)

Proof: Let $A \in NWI(L)$ and $\varsigma_1, \varsigma_2 \in L$ such that $\varsigma_1 \leq \varsigma_2$. Since $(\varsigma_1 \rightarrow \varsigma_2)' = 0$,

We have, $M_A(S_1) \ge \min\{M_A((S_1 \to S_2)'), M_A(S_2)\} = \min\{M_A(0), M_A(S_2)\} = M_A(S_2),$

$$\widetilde{\mathcal{B}_{A}}(\varsigma_{1}) \geq \operatorname{rmin}\{\widetilde{\mathcal{B}_{A}}((\varsigma_{1} \rightarrow \varsigma_{2})'), \widetilde{\mathcal{B}_{A}}(\varsigma_{2})\} = \operatorname{rmin}\{\widetilde{\mathcal{B}_{A}}(0), \widetilde{\mathcal{B}_{A}}(\varsigma_{2})\} = \widetilde{\mathcal{B}_{A}}(\varsigma_{2}),$$

$$J_A(\varsigma_1)\!\!\leq\!\!max\{J_A((\varsigma_1\to\varsigma_2)'),\!J_A(\varsigma_2)\}\!=\!max\{J_A(0),\!J_A(\varsigma_2)\}\!=\!J_A(\varsigma_2).$$

3.4. Proposition: Every MBJ-N WI-ideal A = $(M_A, \widetilde{\mathcal{B}}_A, J_A)$ of L accomplish the following assertions.

$$(\forall \varsigma_{1},\varsigma_{2},\varsigma_{3} \in L) \left(\varsigma_{1} \leq \varsigma_{2}' \rightarrow \varsigma_{3} \Rightarrow \begin{cases} M_{A}(\varsigma_{1}) \geq \min\{M_{A}(\varsigma_{2}), M_{A}(\varsigma_{3})\} \\ \widetilde{\mathcal{B}_{A}}(\varsigma_{1}) \geq r \min\{\widetilde{\mathcal{B}_{A}}(\varsigma_{2}), \widetilde{\mathcal{B}_{A}}(\varsigma_{3})\} \\ J_{A}(\varsigma_{1}) \leq \max\{J_{A}(\varsigma_{2}), J_{A}(\varsigma_{3})\} \end{cases} \right) (4)$$

Proof: Let $A \in NWI(L)$ such that for $all \varsigma_1, \varsigma_2, \varsigma_3 \in L, \varsigma_1 \leq \varsigma_2' \rightarrow \varsigma_3$.

Then
$$1 = \varsigma_1 \rightarrow (\varsigma_2' \rightarrow \varsigma_3) = \varsigma_3' \rightarrow (\varsigma_1 \rightarrow \varsigma_2) = (\varsigma_1 \rightarrow \varsigma_2)' \rightarrow \varsigma_3$$
,

And so
$$(\varsigma_1 \rightarrow \varsigma_2)' \rightarrow \varsigma_3)' = 0$$
.

By(2), we get that

$$M_A(\varsigma_1)\!\!\geq\!\!\min\{M_A((\varsigma_1\!\!\to\!\!\varsigma_2)'),\!M_A(\varsigma_2)\}$$

$$\geq \!\! \min \{ \min \{ M_A(((\varsigma_1 \rightarrow \varsigma_2)' \rightarrow \varsigma_3)'), M_A(\varsigma_3) \}, M_A(\varsigma_2) \}$$

$$=\min\{\min\{M_A(0),M_A(\varsigma_3)\},M_A(\varsigma_2)\}\$$

$$=\min\{M_A(\varsigma_3),M_A(\varsigma_2)\}$$

$$\widetilde{\mathcal{B}}_{A}(\varsigma_{1}) \geq r \min{\{\widetilde{\mathcal{B}}_{A}((\varsigma_{1} \rightarrow \varsigma_{2})'), \widetilde{\mathcal{B}}_{A}(\varsigma_{2})\}}$$

$$\geq \operatorname{rmin} \{ \operatorname{rmin} \{ \widetilde{\mathcal{B}}_{A}(((\varsigma_{1} \rightarrow \varsigma_{2})' \rightarrow \varsigma_{3})'), \widetilde{\mathcal{B}}_{A}(\varsigma_{3}) \}, \widetilde{\mathcal{B}}_{A}(\varsigma_{2}) \}$$

$$=$$
rmin{rmin{ $\widetilde{\mathcal{B}}_{A}}(0)$, $\widetilde{\mathcal{B}}_{A}(\varsigma_{3})$ }, $\widetilde{\mathcal{B}}_{A}(\varsigma_{2})$ }

=
$$\operatorname{rmin}\{\widetilde{\mathcal{B}_A}(\varsigma_3),\widetilde{\mathcal{B}_A}(\varsigma_2)\}$$
,and

$$J_A(\varsigma_1) \le \max\{J_A((\varsigma_1 \rightarrow \varsigma_2)'), J_A(\varsigma_2)\}$$

$$\leq \max\{\max\{J_A(((\varsigma_1 \rightarrow \varsigma_2)' \rightarrow \varsigma_3)'),J_A(\varsigma_3)\},J_A(\varsigma_2)\}$$

$$=\!max\{max\{J_A(0),\!J_A(\varsigma_3)\},\!J_A(\varsigma_2)\}$$

$$=\max\{J_A(\varsigma_3),J_A(\varsigma_2)\}.$$

Hence the proof.

Received: August 25, 2023 Revised: November 17, 2023 Accepted: January 27, 2024

3.5. Definition: A MBJ-Nset $A=(M_A,\widetilde{\mathcal{B}}_A,J_A)$ in L is called a MBJ-Lattice ideal of L if it satisfies(3)

and
$$(\forall \varsigma_1, \varsigma_2 \in L)$$

$$\begin{pmatrix}
M_A(\varsigma_1 V \varsigma_2) \ge \min\{M_A(\varsigma_1), M_A(\varsigma_2)\} \\
\widetilde{\mathcal{B}_A}(\varsigma_1 V \varsigma_2) \ge \min\{\widetilde{\mathcal{B}_A}(\varsigma_1), \widetilde{\mathcal{B}_A}(\varsigma_2)\} \\
J_A(\varsigma_1 V \varsigma_2) \le \max\{J_A(\varsigma_1), J_A(\varsigma_2)
\end{pmatrix} (5)$$

3.6. Example: Let L be the Lattice implication algebra as in Example 3.2 and $A=(M_A, \tilde{B}_A, J_A)$ be a MBJ-N set in L which is defined by

$$\mathbf{M}_{\mathbf{A}}(\varsigma_{1}) = \begin{cases} 1 \text{ if } \varsigma_{1} \in \{0, d\} \text{for every } \varsigma_{1} \in A \\ 0.6 \text{ otherwise for all } \varsigma_{1} \in A \end{cases}$$

$$\widetilde{\mathcal{B}_{A}}(\varsigma_{1}) = \begin{cases} [0.5, 0.6] \ if \ \varsigma_{1} \in \{0, d\} for \ every \ \varsigma_{1} \in A \\ [0.3, 0.4] \ otherwise \ for \ all \ \varsigma_{1} \in A \end{cases}$$

$$J_{A}(\varsigma_{1}) = \begin{cases} 0 \text{ if } \varsigma_{1} \in \{0, d\} \text{for every } \varsigma_{1} \in A \\ 0.4 \text{ otherwise for all } \varsigma_{1} \in A \end{cases}$$

Then $A = (M_A, \widetilde{B}_A, J_A)$ is an MBJ-neutrosophic lattice ideal of A.

We discuss the relationship between a MBJ-NLI-ideal and a MBJ-N Lattice ideal.

3.7. Theorem: Every MBJ-NLI-ideal is a MBJ-N Lattice ideal.

Proof: Let $A = (M_A, \widetilde{B}_A, J_A) \in NLI(L)$. The condition (3) is valid.

Since
$$((\varsigma_1 V \varsigma_2) \rightarrow \varsigma_2)'$$

$$=(((\varsigma_1 \rightarrow \varsigma_2) \rightarrow \varsigma_2) \rightarrow \varsigma_2)'$$

$$=(\varsigma_1 \rightarrow \varsigma_2)'$$

$$\leq (\varsigma_1')'$$
 for all $\varsigma_1, \varsigma_2 \in L$,

by (3) and (2), we have

$$M_A(\varsigma_1 V \varsigma_2) \ge \min \{M_A(((\varsigma_1 V \varsigma_2) \rightarrow \varsigma_2)'), MA(\varsigma_2)\} \ge \min \{M_A(\varsigma_1), M_A(\varsigma_2)\},$$

$$\widetilde{\mathcal{B}_{A}}(\varsigma_{1}V\varsigma_{2}) \geq \operatorname{rmin}\left\{\widetilde{\mathcal{B}_{A}}((\varsigma_{1}V\varsigma_{2}) \rightarrow \varsigma_{2})', \widetilde{\mathcal{B}_{A}}(\varsigma_{2})\right\} \geq \operatorname{rmin}\left\{\widetilde{\mathcal{B}_{A}}(\varsigma_{1}), \widetilde{\mathcal{B}_{A}}(\varsigma_{2})\right\},$$

$$J_A(\varsigma_1 V \varsigma_2) \le \max \{J_A(((\varsigma_1 V \varsigma_2) \rightarrow \varsigma_2)'), JA(\varsigma_2)\} \le \max\{J_A(\varsigma_1), J_A(\varsigma_2)\}$$

Hence, $A=(M_A, \widetilde{\mathcal{B}}_A, J_A)$ is a MBJ-N Latticeideal.

By the example given below, we observed the falsity of the converse of the Theorem 3.7.

3.8. Example:

Let $A=\{0, a, b, p, q, c, d, 1\}$ be a set with Figure(2) as a partial ordering. Define a quasi complement " *" and a binary operation " \rightarrow " on A as in Table (3) and Table (4). Figure (2)

Define V and Λ operations on A as follows

136

$$(\varsigma_1 \lor \varsigma_2) = (\varsigma_1 \rightarrow \varsigma_2) \rightarrow \varsigma_2$$
,

$$(\varsigma_1 \land \varsigma_2) = ((\varsigma_1^* \rightarrow \varsigma_2^*) \rightarrow \varsigma_2^*)^*$$
 for all $\varsigma_1, \varsigma_2 \in A$

Table 1:

ς ₁	x* ς ₁ *
0	1
a	b
b	a
p	0
q	0
c	0
d	0
1	0

Table 2:

ς ₁	00 0	A a	b	Ср	q	С	d	1
0	1	1	1	1	1	1	1	1
a	b	1	b	1	1	1	1	1
b	a	a	1	1	1	1	1	1
p	0	a	b	1	1	1	1	1
q	0	a	b	p	1	1	1	1
c	0	a	b	p	d	1	d	1
d	0	a	b	p	c	C	1	1
1	0	a	b	p	q	C	d	1

Let $A=(M_A, \tilde{B}_A, J_A)$ be a MBJ-N set in L which is defined by

$$\mathbf{M}_{A}(\varsigma_{1}) = \begin{cases} 1 \text{ if } \varsigma_{1} \in \{0, b, d\} \text{for every } \varsigma_{1} \in A \\ 0.7 \text{ otherwise for all } \varsigma_{1} \in A \end{cases}$$

$$\widetilde{\mathcal{B}_{A}}(\varsigma_{1}) = \begin{cases} [0.5, 0.6] \ if \ \varsigma_{1} \in \{0, b, d\} for \ every \ \varsigma_{1} \in A \\ [0.3, 0.4] \ otherwise \ for \ all \ \varsigma_{1} \in A \end{cases}$$

$$J_{A}(\varsigma_{1}) = \begin{cases} 0 \text{ if } \varsigma_{1} \in \{0, b, d\} \text{for every } \varsigma_{1} \in A \\ 0.3 \text{ otherwise for all } \varsigma_{1} \in A \end{cases}$$

Thus we have $A=(M_A, \tilde{B}_A, J_A)$ is a MBJ-neutrosophic lattice ideal of A, but not a MBJ-neutrosophic WI-ideal of A for

$$M_A(p) < \min\{M_A((p \to d)^*), M_A(d)\}$$

$$\widetilde{\mathcal{B}_A}(p) < \min{\{\widetilde{\mathcal{B}_A}((p \to d)^*), \widetilde{\mathcal{B}_A}(d)\}}$$

$$J_A(p) > \max\{J_A((p \to d)^*), J_A(d)\}$$

Now we investigate that under which condition, a MBJ-N Lattice ideal can be aMBJ-NLI-ideal.

3.9. Theorem:

In a LatticeH-implication algebra L, every MBJ-N Lattice ideal is a MBJ-NLI-ideal.

Proof: Let $A = (M_A, \widetilde{\mathcal{B}}_A, J_A)$ be a MBJ-N Lattice ideal of a Lattice H-implication algebra L.

Moreover, since $0 \le \varsigma_1$ for all $\varsigma_1 \in L$, it follows from (1) that

$$M_A(0) \ge M_A(\varsigma_1), \widetilde{\mathcal{B}}_A(0) \ge \widetilde{\mathcal{B}}_A(\varsigma_1) \text{ and } J_A(0) \le J_A(\varsigma_1).$$

DOI: https://doi.org/10.54216/IJNS.230311

Received: August 25, 2023 Revised: November 17, 2023 Accepted: January 27, 2024

Also, from $S_1 \leq S_1 \vee S_2$ for all $S_1, S_2 \in L$, by (3) and (5) we get that,

$$\begin{split} &M_A(\varsigma_1) \!\! \geq M_A(\varsigma_1 V \varsigma_2) \!\! = \!\! M_A(\varsigma_2 V (\varsigma_1' V \varsigma_2)') \\ &= \!\! M_A(\varsigma_2 V (\varsigma_1 \!\! \rightarrow \!\! \varsigma_2)') \end{split}$$

$$\geq \min\{M_A(\varsigma_2), M_A((\varsigma_1 \rightarrow \varsigma_2)')\},\$$

$$\widetilde{\mathcal{B}}_{A}(\varsigma_{1}) \geq \widetilde{\mathcal{B}}_{A}(\varsigma_{1} V \varsigma_{2}) = \widetilde{\mathcal{B}}_{A}(\varsigma_{2} V (\varsigma_{1}'V \varsigma_{2})')$$

$$=\widetilde{\mathcal{B}_{A}}(\varsigma_{2} \ V \ (\varsigma_{1} \rightarrow \varsigma_{2})')$$

$$\geq \min\{\widetilde{\mathcal{B}}_{A}(\varsigma_{2}),\widetilde{\mathcal{B}}_{A}((\varsigma_{1} \rightarrow \varsigma_{2})')\},$$

And
$$J_A(\varsigma_1) \le J_A(\varsigma_1 V \varsigma_2) = J_A(\varsigma_2 V(\varsigma_1' V \varsigma_2)'$$

$$= J_A (\varsigma_2 V(\varsigma_1 \rightarrow \varsigma_2)')$$

$$\leq \max\{J_A(\varsigma_2),J_A((\varsigma_1\rightarrow \varsigma_2)')\}.$$

Therefore, $A=(M_A, \widetilde{\mathcal{B}_A}, J_A) \in MBJ-NLI(L)$.

4. Conclusion:

In this paper, we have introduced the definitions of MBJ-neutrosophic WI-ideal and MBJ-neutrosophic lattice ideal of lattice Wajsberg algebra. We have discussed some of their properties with illustrations. Also, we have shown that every MBJ-neutrosophic WI-ideal of lattice Wajsberg algebra is an MBJ-neutrosophic lattice ideal of lattice Wajsberg algebra. But the converse part is true only in the lattice H-Wajsberg algebras. We hope that more links of logics emerge by the stipulating of this work.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- [1] Wajsberg. M:Beitragezum Metaaussagenkalkul I, Monat. Mat. phys. 42(1935) page 240.
- [2] Rose.A and Rosser. J. B, Fragments of many valued statement calculi, Transaction of American Mathematical Society87,(1958), 1-53.
- [3] Font. J. M, Rodriguez. A. J and Torrens. A, Wajsberg algebras, STOCHASTICA VolVIII, No 1, (1984), 5-31.
- [4] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.
- [5] K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1) (1986) 87-96.
- [6] K.T.Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61(2) (1994) 137-142.
- [7] M. Basheer Ahamed, A. Ibrahim, Fuzzy implicative filters of Lattice Wajsberg algebras, Advances in Fuzzy Mathematics, 6, 235-243 (2011)
- [8] A.Ibrahim and C.Shajitha Begum, On WI-Ideals Of lattice Wajsberg algebras, Global Journal of Pure and Applied Mathematics, 13(10) (2017) 7237-7254.
- [9] A.Ibrahim and C.Shajitha Begum, Fuzzy and normal fuzzy WI-ideals of lattice Wajsberg algebras, International Journal of Mathematical Archive, 8(11) (2017) 122-130.
- [10] C.C.Chang, Algebraic analysis of many-valued logics, Transactions of the Am. Math. Soc., 88 (1958) 467-490.
- [11] C.C.Chang, A new proof of the completeness of the Lukasiewicz axioms, Transactions of the Am. Math. Soc., 93 (1959) 74-80.
- [12] Y.B.Jun and K.H.Kim, Intuitionistic fuzzy ideals in BCK-algebras, Internat. J. Math. and Math. Sci., 24(12) (2000) 839-849.

138

- [13] Y.B.Jun and C.H.Park, Ideals of PSEUDO MV- algebras based on vague set theory, Iranian Journal Of Fuzzy Systems, 6(2) (2009) 31-45.
- [14] F. Smarandache (2003), Definition of Neutrosophic Logic A Generalization of the Intuitionistic Fuzzy Logic, Proceedings of the Third Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT 2003, September 10-12, 2003, Zittau, Germany; University of Applied Sciences at Zittau/Goerlitz, 141-146.
- [15] F. Smarandache (2002a), A Unifying Field in Logics: Neutrosophic Logic, in MultipleValued Logic/An International journal, Vol.8, No.3, 385-438, 2002.
- [16] F. Smarandache (2002b), Neutrosophy, A New Branch of Philosophy, in MultipleValued Logic / An International Journal, Vol. 8, No. 3, 297-384, 2002.
- [17] M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, MBJ-neutrosophic structures and its applications in BCK/BCI-algebras, Neutrosophic sets and systems Vol. 23, 2018.
- [18] M.Basheer Ahamed and A.Ibrahim, Anti fuzzy implicative filters in lattice W-algebras, International Journal of Computational Science and Mathematics, 4(1) (2012) 49-56.

DOI: https://doi.org/10.54216/IJNS.230311 Received: August 25, 2023 Revised: November 17, 2023 Accepted: January 27, 2024