Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 12 , Issue 2 , PP: 19-33, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Enhanced Heart Disease Prediction Using Machine Learning Techniques

Jata Shanker Mishra 1 , N. K.Gupta 2 , Aditi Sharma 3 *

  • 1 Department of Computer Science and Information Technology, Vaugh Institute of Agricultural Engineering And Technology, Prayagraj, U.P., India - (jata.mishra@shiats.edu.in)
  • 2 Department of Computer Science and Information Technology, Vaugh Institute of Agricultural Engineering And Technology, Prayagraj, U.P., India - (narendra.gupta@shiats.edu.in)
  • 3 Department of CSE, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India; SMIEEE, SIT, Symbiosis International (Deemed University), Pune, India - (aditi.sharma@ieee.org)
  • Doi: https://doi.org/10.54216/JISIoT.120202

    Received: August 25, 2023 Revised: November 12, 2023 Accepted: April 09, 2024
    Abstract

    This study leverages sophisticated machine learning methodologies, particularly XGBoost, to analyze cardiovascular diseases through cardiac datasets. The methodology encompasses meticulous data pre-processing, training of the XGBoost algorithm, and its performance evaluation using metrics such as accuracy, precision, and ROC curves. This technique represents a notable progression in the realm of medical research, potentially leading to enhanced diagnostic precision and a deeper comprehension of cardiovascular ailments, thereby improving patient care and treatment modalities in cardiology. Furthermore, the research delves into the utilization of deep learning methodologies for the automated delineation of cardiac structures in MRI and mammography images, aiming to boost diagnostic precision and patient management. [24][3][5][6] In assessing machine learning algorithms' efficacy in diagnosing cardiovascular diseases, this analysis underscores the pivotal role of such algorithms and their possible data inputs. Additionally, it investigates promising directions for future exploration, such as the application of reinforcement learning. A significant aspect of our investigation is the development and deployment of sophisticated deep learning models for segmenting right ventricular images from cardiac MRI scans, aiming at heightened accuracy and dependability in diagnostics. Through the utilization of advanced techniques like Fourier Convolutional Neural Network (FCNN) and improved versions of Vanilla Convolutional Neural Networks (Vanilla-CNN) and Residual Networks (ResNet), we achieved a substantial improvement in accuracy and reliability. This enhancement allows for more precise and quicker identification and diagnosis of cardiovascular diseases, which is of utmost importance in clinical practice. Evaluation of Machine Learning Algorithms: We conducted a comprehensive evaluation of machine learning algorithms in the context of cardiovascular disease diagnosis. This assessment emphasized the fundamental role of machine learning algorithms and their potential data sources. We also explored promising avenues, such as reinforcement learning, for future research. Factors Affecting Predictive Models: We highlighted the critical factors affecting the effectiveness of machine learning-based predictive models. These factors include data heterogeneity, depth, and breadth, as well as the nature of the modeling task, and the choice of algorithms and feature selection methods. Recognizing and addressing these factors are essential for building reliable models. 

    Keywords :

    XGBoost , Machine Learning , Cardiovascular Diseases , Cardiac Data Analysis , Data Preprocessing , Model Evaluation , Diagnostic Accuracy , ROC Curves , Medical Research , Cardiology

    References

    [1]    Internal Medicine Residency Handbook. "Right Heart Catheterization." VIM Book. Retrieved January 13, 2024, from https://www.vim-book.org/cardiology/cardiology-rhc

    [2]    Minaee, S., et al. "Image segmentation using DL: A survey." IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022;44(7):3523-3542.

    [3]    Wang, J., Shi, X., Yao, X., Ren, J., & Du, X. "DL-based CT imaging in diagnosing myeloma and its prognosis evaluation." Journal of Healthcare Engineering. 2022.

    [4]    Patel, S. "DL models for image segmentation." In 8th International Conference on Computing for Sustainable Global Development. 2021.

    [5]    Abdelhafiz, D., et al. "Convolutional neural network for automated mass segmentation in mammography." BMC Bioinformatics. 2020.

    [6]    Michael, R.A., Kheradvar, A., & Jafarkhani, H. "Auto-segmentation of the right ventricle from cardiac MRI using a learning-based approach." Magnetic Resonance in Medicine. 2017;78(6):2439-2448.

    [7]    Sharifov OF, Schiros CG, Aban I, Perry GJ, Dell'italia LJ, Lloyd SG, Denney TS Jr, Gupta H. "Left Ventricular Torsion Shear Angle Volume Approach for Noninvasive Evaluation of Diastolic Dysfunction in Preserved Ejection Fraction." J Am Heart Assoc. 2017 Dec 29;7(1):e007039. doi: 10.1161/JAHA.117.007039.

    [8]    Sharma, S., et al. "Secrecy outage of a multi-relay cooperative communication network with the accumulation of harvesting energy at relays." IET Communications. 2019;13(18):2986-2995.

    [9]    Fernández-Pérez GC, Duarte R, Corral de la Calle M, Calatayud J, Sánchez González J. "[Analysis of left ventricular diastolic function using magnetic resonance imaging]." Radiologia. 2012 Jul-Aug;54(4):295-305. doi: 10.1016/j.rx.2011.09.018. Spanish.

    [10] Anita Venugopal, Aditi Sharma, F. Abdul Munaim Al Rawas, Rama Devi S.. (2023). Enhancing Fusion Teaching based Research from the Student Perspective. Journal of Fusion: Practice and Applications, 12 ( 2 ), 109-119 (Doi   :  https://doi.org/10.54216/FPA.120209)

    [11] Sanz, J., Conroy, J., & Narula, J. "Imaging of the right ventricle." Cardiology Clinics. 2012;30(2):189-203.

    [12] Nucifora G, Aquaro GD, Pingitore A, Masci PG, Lombardi M. "Myocardial fibrosis in isolated left ventricular non-compaction and its relation to disease severity." Eur J Heart Fail. 2011 Feb;13(2):170-6. doi: 10.1093/eurjhf/hfq222.

    [13] Caudron J, Fares J, Bauer F, Dacher JN. "Evaluation of left ventricular diastolic function with cardiac MR imaging." Radiographics. 2011 Jan-Feb;31(1):239-59. doi: 10.1148/rg.311105049. PMID: 21257944.

    [14] Hanssen H, Keithahn A, Hertel G, Drexel V, Stern H, Schuster T, Lorang D, Beer AJ, Schmidt-Trucksäss A, Nickel T, Weis M, Botnar R, Schwaiger M, Halle M. "Magnetic resonance imaging of myocardial injury and ventricular torsion after marathon running." Clin Sci (Lond). 2011 Feb;120(4):143-52. doi: 10.1042/CS20100206.

    [15] Murata K. "[Predictive significance of evaluation of left ventricular diastolic function in patients with heart failure]." Rinsho Byori. 2010 Aug;58(8):792-8. Japanese.

    [16] Jurcut, R., et al. "The echocardiographic assessment of the right ventricle: What to do in 2010." European Journal of Echocardiography. 2010;11:81-96.

    [17] Barbieri A, Bursi F, Politi L, Rossi L, Fiocchi F, Ligabue G, Pingitore A, Positano V, Torricelli P, Modena MG. "Echocardiographic diastolic dysfunction and magnetic resonance infarct size in healed myocardial infarction treated with primary angioplasty." Echocardiography. 2008 Jul;25(6):575-83. doi: 10.1111/j.1540-8175.2008.00679.x.

    [18] Mizuguchi Y, Oishi Y, Tanaka H, Miyoshi H, Ishimoto T, Nagase N, Oki T. "Arterial stiffness is associated with left ventricular diastolic function in patients with cardiovascular risk factors: early detection with the use of cardio-ankle vascular index and ultrasonic strain imaging." J Card Fail. 2007 Nov;13(9):744-51. doi: 10.1016/j.cardfail.2007.05.010.

    [19] Paelinck BP, Vrints CJ, Bax JJ, Bosmans JM, De Hert SG, de Roos A, Lamb HJ. "Relation of B-type natriuretic peptide early after acute myocardial infarction to left ventricular diastolic function and extent of myocardial damage determined by magnetic resonance imaging." Am J Cardiol. 2006 Apr 15;97(8):1146-50. doi: 10.1016/j.amjcard.2005.11.030.

    [20] Palmieri V, Okin PM, Bella JN, Wachtell K, Oikarinen L, Gerdts E, Boman K, Nieminen MS, Dahlöf B, Devereux RB. "Electrocardiographic strain pattern and left ventricular diastolic function in hypertensive patients with left ventricular hypertrophy: the LIFE study." J Hypertens. 2006 Oct;24(10):2079-84. doi: 10.1097/01.hjh.0000244958.85232.06.

    [21] Edvardsen T, Rosen BD, Pan L, Jerosch-Herold M, Lai S, Hundley WG, Sinha S, Kronmal RA, Bluemke DA, Lima JA. "Regional diastolic dysfunction in individuals with left ventricular hypertrophy measured by tagged magnetic resonance imaging--the Multi-Ethnic Study of Atherosclerosis (MESA)." Am Heart J. 2006 Jan;151(1):109-14. doi: 10.1016/j.ahj.2005.02.018.

    [22] Bello D, Shah DJ, Farah GM, Di Luzio S, Parker M, Johnson MR, Cotts WG, Klocke FJ, Bonow RO, Judd RM, Gheorghiade M, Kim RJ. "Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing beta-blocker therapy." Circulation. 2003 Oct 21;108(16):1945-53. doi: 10.1161/01.CIR.0000095029.57483.60.

    [23] Badano LP, Albanese MC, De Biaggio P, Rozbowsky P, Miani D, Fresco C, Fioretti PM. "Prevalence, clinical characteristics, quality of life, and prognosis of patients with congestive heart failure and isolated left ventricular diastolic dysfunction." J Am Soc Echocardiogr. 2004 Mar;17(3):253-61. doi: 10.1016/j.echo.2003.11.002.

    [24] Yang Z, Berr SS, Gilson WD, Toufektsian MC, French BA. "Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast-enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction." Circulation. 2004 Mar 9;109(9):1161-7. doi: 10.1161/01.CIR.0000118495.88442.32.

    [25] Petitjean, C., et al. "Right ventricle segmentation from cardiac MRI: a collation study." Medical Image Analysis. 2015;19:187-202.

    [26] Brandts A, van Elderen SG, Westenberg JJ, van der Grond J, van Buchem MA, Huisman MV, Kroft LJ, Tamsma JT, de Roos A. "Association of aortic arch pulse wave velocity with left ventricular mass and lacunar brain infarcts in hypertensive patients: assessment with MR imaging." Radiology. 2009 Dec;253(3):681-8. doi: 10.1148/radiol.2533082264.

    [27] Kroft LJ, Simons P, van Laar JM, de Roos A. "Patients with pulmonary fibrosis: cardiac function assessed with MR imaging." Radiology. 2000 Aug;216(2):464-71. doi: 10.1148/radiology.216.2.r00jl06464.

    [28] Mandinov L, Eberli FR, Seiler C, Hess OM. "Diastolic heart failure." Cardiovasc Res. 2000 Mar;45(4):813-25. doi: 10.1016/s0008-6363(99)00399-5.

    [29] Rahul Sharma , Shiv Shakti Shrivastava , Aditi Sharma. (2023). Predicting Student Performance Using Educational Data Mining and Learning Analytics Technique. Journal of Journal of Intelligent Systems and Internet of Things, 10 ( 2 ), 24-37 (Doi                                                                        https://doi.org/10.54216/JISIoT.100203)

    [30] Z. Chen, Y. Xu, and H. Liu, "A novel outlier detection method using ensemble learning for improving diabetes prediction accuracy," Journal of Biomedical Informatics, vol. 112, p. 103613, 2021. DOI: 10.1016/j.jbi.2020.103613.

    [31] Natsume T, Amano T, Takehara Y, Ichihara T, Takeda K, Sakuma H. "Quantitative assessment of regional systolic and diastolic functions and temporal heterogeneity of myocardial contraction in patients with myocardial infarction using cine magnetic resonance imaging and Fourier fitting." Magn Reson Imaging. 2009 Dec;27(10):1440-6. doi: 10.1016/j.mri.2009.05.043.

    [32] Little WC, Downes TR, Applegate RJ. "Invasive evaluation of left ventricular diastolic performance." Herz. 1990 Dec;15(6):362-76.

    [33] Oki T. "State of the art: 'diastology' research 1998." J Med Invest. 1998 Aug;45(1-4):9-25.

     

     

    Cite This Article As :
    Shanker, Jata. , K.Gupta, N.. , Sharma, Aditi. Enhanced Heart Disease Prediction Using Machine Learning Techniques. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2024, pp. 19-33. DOI: https://doi.org/10.54216/JISIoT.120202
    Shanker, J. K.Gupta, N. Sharma, A. (2024). Enhanced Heart Disease Prediction Using Machine Learning Techniques. Journal of Intelligent Systems and Internet of Things, (), 19-33. DOI: https://doi.org/10.54216/JISIoT.120202
    Shanker, Jata. K.Gupta, N.. Sharma, Aditi. Enhanced Heart Disease Prediction Using Machine Learning Techniques. Journal of Intelligent Systems and Internet of Things , no. (2024): 19-33. DOI: https://doi.org/10.54216/JISIoT.120202
    Shanker, J. , K.Gupta, N. , Sharma, A. (2024) . Enhanced Heart Disease Prediction Using Machine Learning Techniques. Journal of Intelligent Systems and Internet of Things , () , 19-33 . DOI: https://doi.org/10.54216/JISIoT.120202
    Shanker J. , K.Gupta N. , Sharma A. [2024]. Enhanced Heart Disease Prediction Using Machine Learning Techniques. Journal of Intelligent Systems and Internet of Things. (): 19-33. DOI: https://doi.org/10.54216/JISIoT.120202
    Shanker, J. K.Gupta, N. Sharma, A. "Enhanced Heart Disease Prediction Using Machine Learning Techniques," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 19-33, 2024. DOI: https://doi.org/10.54216/JISIoT.120202