Volume 15 , Issue 2 , PP: 78-86, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Ammar Nadal Shareef 1 , Amer Basim Shaalan 2 , Hayder Salah Naeem 3 , Mustafa Albdairi 4 *
Doi: https://doi.org/10.54216/JCIM.150207
The study, called "A Novel Design of a Quadratic Koch Fractal Nanoantenna," aims to create and study a brand-new microstrip nanoantenna that works in the THz range, specifically between 100 and 130 THz, and can handle a wide range of optical communication frequencies. We examine two unique geometries, specifically the quadratic Koch fractal patch (QKF) and the complementary quadratic Koch fractal patch (CQKF), utilizing two different dielectric materials as substrates. We employ silicon (Si) dielectric material because of its high dielectric constant (11.9), while we use the silicon dioxide (SiO2) dielectric material because of its dielectric constant (4). The feeding method employed to stimulate these nanoantennas has been waveguide feed at a frequency of 50 Ω.We have employed a software simulator, available for purchase as CST STUDIO SUITE, to achieve the established objectives for assessing the performance of each proposed nanoantenna.
Quadratic Koch Fractal , Nanoantenna , Terahertz Applications , Microstrip antenna
[1] Drégely D. Optical antennas: nanoscale radiation engineering and enhanced light-matter interaction 2014.
[2] Biagioni P, Huang J-S, Hecht B. Nanoantennas for visible and infrared radiation. Reports Prog Phys 2012;75:24402. https://doi.org/10.1088/0034-4885/75/2/024402.
[3] Hussein; Hussain RR. A WIDEBAND HYBRID PLASMONIC FRACTAL PATCH NANOANTENNA. Int J Electron Commun Eng Technol 2014;5:1–8.
[4] Junk A, Riess F. From an idea to a vision: There’s plenty of room at the bottom. Am J Phys 2006;74:825–30. https://doi.org/10.1119/1.2213634.
[5] Kavitha S, Mishra SK, Singh A, Singh SC. 4 × 4 graphene nano-antenna array for plasmonic sensing applications. Discov Appl Sci 2024;6. https://doi.org/10.1007/s42452-024-06161-0.
[6] Abbasi QH, Yang K, Chopra N, Jornet JM, Abuali NA, Qaraqe KA, et al. Nano-Communication for Biomedical Applications: A Review on the State-of-the-Art From Physical Layers to Novel Networking Concepts. IEEE Access 2016;4:3920–35. https://doi.org/10.1109/access.2016.2593582.
[7] Cheerla S, Subbareddy V, Sudha Harika T, Yalla J, Pamulapati P. Design and Analysis of Plasmonic Antenna for Nanoscale Wireless Applications. J Phys Conf Ser 2021;1804:12164. https://doi.org/10.1088/1742-6596/1804/1/012164.
[8] Elsaid M, Mahmoud KR, Hussein M, Hameed MFO, Obayya SSA. Improvement of sectoral horn nanoantenna based on arc directors for point to point communications. Opt Quantum Electron 2021;53. https://doi.org/10.1007/s11082-021-02788-0.
[9] Zhao Y, Alu A. Optical nanoantennas and their applications. 2013 IEEE Radio Wirel Symp 2013:58–60. https://doi.org/10.1109/rws.2013.6486640.
[10] Alù A, Engheta N. Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas. Phys Rev Lett 2010;104. https://doi.org/10.1103/physrevlett.104.213902.
[11] Novotny L. Effective Wavelength Scaling for Optical Antennas. Phys Rev Lett 2007;98. https://doi.org/10.1103/physrevlett.98.266802.
[12] Pfeiffer C. Fundamental Efficiency Limits for Small Metallic Antennas. IEEE Trans Antennas Propag 2017;65:1642–50. https://doi.org/10.1109/tap.2017.2670532.
[13] Shenker OR. Fractal geometry is not the geometry of nature. Stud Hist Philos Sci Part A 1994;25:967–81. https://doi.org/10.1016/0039-3681(94)90072-8.
[14] Sidhu AK, Sivia JS. Design of Wideband Fractal MIMO Antenna using Minkowski and Koch Hybrid Curves on Half Octagonal Radiating Patch with High Isolation and Gain for 5G Applications. Adv Electromagn 2023;12:58–69. https://doi.org/10.7716/aem.v12i1.1982.
[15] Gianvittorio JP, Rahmat-Samii Y. Fractal antennas: a novel antenna miniaturization technique, and applications. IEEE Antennas Propag Mag 2002;44:20–36. https://doi.org/10.1109/74.997888.
[16] Anguera J, Andújar A, Jayasinghe J, Chakravarthy VVSSS, Chowdary PSR, Pijoan JL, et al. Fractal Antennas: An Historical Perspective. Fractal Fract 2020;4:3. https://doi.org/10.3390/fractalfract4010003.
[17] Sanu SV, Rodrigues S, Vallikkunnel JKN, Sivan SA. Fractal-Enhanced Microstrip Antennas: Miniaturization, Multiband Performance and Cross-Polarization Minimization for Wi-Fi Applications. RAiSE-2023 2023:127. https://doi.org/10.3390/engproc2023059127.
[18] Froumsia D, Jean-François ED, Houwe A, Kolyang, Inc M. Miniaturization of dual bands fractal-based microstrip patch fractal antenna for X and Ku bands applications. Eur Phys J Plus 2022;137. https://doi.org/10.1140/epjp/s13360-022-02969-0.
[19] Wang L, Yu J, Xie T, Bi K. A Novel Multiband Fractal Antenna for Wireless Application. Int J Antennas Propag 2021;2021:1–9. https://doi.org/10.1155/2021/9926753.
[20] Attioui S, El Ouadi Z, El Aoud SE, Ibnyaich S, Zeroual A. Design of Multiband Fractal Antenna Array for Wireless Communication. ITM Web Conf 2023;52:3006. https://doi.org/10.1051/itmconf/20235203006.
[21] Karlina S, Nugroho BS, Citra Atmaja AH, Ismail N. Ultra-Wideband Antenna for Bandwidth Enhancement Telkomsel Orbit Mobile Wifi. 2023 9th Int Conf Wirel Telemat 2023:1–5. https://doi.org/10.1109/icwt58823.2023.10335417.
[22] Komeylian S, Paolini C. Performance Evaluation of a Fractal Plasmonic Bowtie Nano-Antenna: Optical and Far-Field Properties. IEEE Trans Nanotechnol 2024;23:9–19. https://doi.org/10.1109/tnano.2023.3332555.
[23] Pahuja A, Kumar S, Parihar MS, Dinesh Kumar V. Half Euler Spiral Nanoantenna based Smart City Compatible Thin Film Solar Cell. 2023 IEEE 7th Conf Inf Commun Technol 2023:1–4. https://doi.org/10.1109/cict59886.2023.10455675.
[24] Sullivan, Dennis M. Electromagnetic simulation using the FDTD method. John Wiley & Sons, 2013.
[25] Paun M, Nichita M, Paun V, Paun V. Fifth‐generation fractal antenna design based on the <scp>Koch Snowflake geometry. A fractal theory application. Expert Syst 2023. https://doi.org/10.1111/exsy.13242.
[26] Nurujjaman M. A Review of Fractals Properties: Mathematical Approach. Sci J Appl Math Stat 2017;5:98. https://doi.org/10.11648/j.sjams.20170503.11.