Journal of Cybersecurity and Information Management

Journal DOI

https://doi.org/10.54216/JCIM

Submit Your Paper

2690-6775ISSN (Online) 2769-7851ISSN (Print)

Volume 14 , Issue 2 , PP: 70-86, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

LSTM-NAS-Net: Enhanced Brain Tumor Segmentation in MRI and CT Images using LSTM-Autoencoder-based Neural Architecture Search

Santhosh Kumar 1 * , S. P. Sasirekha 2 , R. Santhosh 3 *

  • 1 Department of Computer Science and Engineering, Faculty of Engineering, Karpagam Academy of Higher Education Coimbatore, Tamil Nadu, India - (er.s.santhosh03@gmail.com)
  • 2 Department of Computer Science and Engineering, Faculty of Engineering, Karpagam Academy of Higher Education Coimbatore, Tamil Nadu, India - (sugi.sasi29@yahoo.com)
  • 3 Department of Computer Science and Engineering, Faculty of Engineering, Karpagam Academy of Higher Education Coimbatore, Tamil Nadu, India - (santhoshhrd@gmail.com)
  • Doi: https://doi.org/10.54216/JCIM.140205

    Received: January 17, 2024 Revised: March 18, 2024 Accepted: July 02, 2024
    Abstract

    Brain Tumour (BT) a mass or a lump or a growth which occurs due to abnormal cell division or unusual growth of cells in the brain tissue. Initially, the two major types of BT are Primary BT and Secondary BT, the tumour that originate from brain is known as Primary BT and it may be cancerous or non-cancerous. The tumour the initiates from other part of the body and spreads to the brain is stated as secondary BT.  Diagnosing BT generally involves a multiple investigation method, such as MRI, CT, PET, SPECT as well as the neurological examinations and blood investigations, whereas some of the patients may need biopsies to evaluate the tumour size and stage. Here we use MRI and CT images for BT segmentation whereas these modalities play a major role in diagnosing, treating, planning and monitoring the BT patients. Moreover, the multimodal data can provide a quantitative information’s about the tumour size, shape, volume and texture. While segmenting the BT the lack of segmentation methods and the interpretability of the segmented regions are limited. To overcome this, we propose a novel LSTM autoencoder bas NAS method which is used for the extracting the BT features and these features can be fused using Contextual Integration Module (CIM) and segmented using the Segmentation Guided Regulizer (SGR) which helps to overcome the stated issues. Finally, the performance metrices are calculated by comparing with the state-of -the -art methods and our method achieves a best segmenting metrices.

    Keywords :

    Medical image Segmentation , Magnetic Resonance Imaging , CT , Unsupervised method , NAS

    References

    [1]     Zheng, P., Zhu, X., & Guo, W. (2022). Brain tumour segmentation based on an improved U-Net. BMC Medical Imaging, 22(1), 199.

    [2]     Roy, S., Saha, R., Sarkar, S., Mehera, R., Pal, R. K., & Bandyopadhyay, S. K. (2023). Brain tumour segmentation using S-Net and SA-Net. IEEE Access, 11, 28658-28679.

    [3]     Ambeth Kumar, V.D. (2017). Automation of Image Categorization with Most Relevant Negatives. Pattern Recognition and Image Analysis, 27(3), 371–379.

    [4]     Kumar, I., Kumar, A., Kumar, V.D.A. et al. (2022) Dense Tissue Pattern Characterization Using Deep Neural Network. Cogn Comput 14, 1728–1751.

    [5]     Jiang, Y., Zhang, Y., Lin, X., Dong, J., Cheng, T., & Liang, J. (2022). SwinBTS: A method for 3D multimodal brain tumor segmentation using swin transformer. Brain sciences, 12(6), 797.

    [6]     Lin, J., Lin, J., Lu, C., Chen, H., Lin, H., Zhao, B., ... & Han, C. (2023). CKD-TransBTS: clinical knowledge-driven hybrid transformer with modality-correlated cross-attention for brain tumor segmentation. IEEE transactions on medical imaging.

    [7]     Zou, K., Yuan, X., Shen, X., Wang, M., & Fu, H. (2022, September). Tbrats: Trusted brain tumor segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 503-513). Cham: Springer Nature Switzerland.

    [8]     Ladkat, A. S., Bangare, S. L., Jagota, V., Sanober, S., Beram, S. M., Rane, K., & Singh, B. K. (2022). Deep neural network-based novel mathematical model for 3D brain tumor segmentation. Computational Intelligence and Neuroscience, 2022.

    [9]     Kumar, V.D.A., Sharmila, S., Kumar, A. et al.  (2023). A novel solution for finding postpartum haemorrhage using fuzzy neural techniques. Neural Comput & Applic. 35(33), 23683–23696

    [10]   Yan, C., Ding, J., Zhang, H., Tong, K., Hua, B., & Shi, S. (2022). SEResU-Net for multimodal brain tumor segmentation. IEEE Access, 10, 117033-117044.

    [11]   Musallam, A. S., Sherif, A. S., & Hussein, M. K. (2022). A new convolutional neural network architecture for automatic detection of brain tumors in magnetic resonance imaging images. IEEE access, 10, 2775-2782.

    [12]   Sathya Preiya, V., and V. D. Ambeth Kumar. (2023). Deep Learning-Based Classification and Feature Extraction for Predicting Pathogenesis of Foot Ulcers in Patients with Diabetes. Diagnostics 13(12), 1983.

    [13]   Subramanian, S., Ghafouri, A., Scheufele, K. M., Himthani, N., Davatzikos, C., & Biros, G. (2022). Ensemble inversion for brain tumor growth models with mass effect. IEEE Transactions on Medical Imaging, 42(4), 982-995.

    [14]   Guan, X., Yang, G., Ye, J., Yang, W., Xu, X., Jiang, W., & Lai, X. (2022). 3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework. BMC medical imaging, 22, 1-18.

    [15]   Thompson, B. H., Di Caterina, G., & Voisey, J. P. (2022, March). Pseudo-label refinement using superpixels for semi-supervised brain tumour segmentation. In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) (pp. 1-5). IEEE.

    [16]   Khairandish, M. O., Sharma, M., Jain, V., Chatterjee, J. M., & Jhanjhi, N. Z. (2022). A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images. Irbm, 43(4), 290-299.

    [17]   Balakrishnan, Chitra, and V. D. Ambeth Kumar. (2023). IoT-Enabled Classification of Echocardiogram Images for Cardiovascular Disease Risk Prediction with Pre-Trained Recurrent Convolutional Neural Networks. Diagnostics 13(4), 775

    [18]   Rajaragavi, R., & Rajan, S. P. (2022). Optimized U-Net Segmentation and Hybrid Res-Net for Brain Tumor MRI Images Classification. Intelligent automation & soft computing, 32(1).

    [19]   Hemamalini, Selvamani, and Visvam Devadoss Ambeth Kumar. (2022). Outlier Based Skimpy Regularization Fuzzy Clustering Algorithm for Diabetic Retinopathy Image Segmentation. Symmetry,  14(12),  2512

    [20]   Ejaz, K., Suaib, N. B. M., Kamal, M. S., Rahim, M. S. M., & Rana, N. (2023). Segmentation Method of Deterministic Feature Clustering for identification of brain tumor using MRI. IEEE Access.

    [21]   Sheela, C. J. J., & Suganthi, G. (2022). Automatic brain tumor segmentation from MRI using greedy snake model and fuzzy C-means optimization. Journal of King Saud University-Computer and Information Sciences, 34(3), 557-566.

    [22]   Ferdous, G. J., Sathi, K. A., Hossain, M. A., Hoque, M. M., & Dewan, M. A. A. (2023). LCDEiT: A linear complexity data-efficient image transformer for MRI brain tumor classification. IEEE Access, 11, 20337-20350.

    [23]   Ambeth Kumar, V.D. Ramakrishnan,M. (2013). Temple and Maternity Ward Security using FPRS. Journal of  Electrical Engineering & Technology, 8(3), 633-637.

    [24]   Asif, S., Yi, W., Ain, Q. U., Hou, J., Yi, T., & Si, J. (2022). Improving effectiveness of different deep transfer learning-based models for detecting brain tumors from MR images. IEEE Access, 10, 34716-34730.

    [25]   Zhu, Z., He, X., Qi, G., Li, Y., Cong, B., & Liu, Y. (2023). Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI. Information Fusion, 91, 376-387.

    [26]   Sherubha, “Graph Based Event Measurement for Analyzing Distributed Anomalies in Sensor Networks”, Sådhanå(Springer), 45:212, https://doi.org/10.1007/s12046-020-01451-w

    [27]   Piyush K. Pareek, Pixel Level Image Fusion in Moving objection Detection and Tracking with Machine Learning “,Fusion: Practice and Applications, Volume 2 , Issue 1 , PP: 42-60, 2020

    [28]   Shivam Grover, Kshitij Sidana, Vanita Jain, “Egocentric Performance Capture: A Review”, Fusion: Practice and Applications, Volume 2, Issue 2 , PP: 64-73, 2020.

    [29]   Abdel Nasser H. Zaied, Mahmoud Ismail and Salwa El- Sayed, A Survey on Meta-heuristic Algorithms for Global Optimization Problems, Journal of Intelligent Systems and Internet of Things,Volume 1 , Issue 1 , PP: 48-60, 2020

    [30]   Mahmoud H.Alnamoly, Ahmed M. Alzohairy, Ibrahim M. El-Henawy, “A survey on gel images analysis software tools, Journal of Intelligent Systems and Internet of Things,Volume 1 , Issue 1 , PP: 40-47, 2021.

    Cite This Article As :
    Kumar, Santhosh. , P., S.. , Santhosh, R.. LSTM-NAS-Net: Enhanced Brain Tumor Segmentation in MRI and CT Images using LSTM-Autoencoder-based Neural Architecture Search. Journal of Cybersecurity and Information Management, vol. , no. , 2024, pp. 70-86. DOI: https://doi.org/10.54216/JCIM.140205
    Kumar, S. P., S. Santhosh, R. (2024). LSTM-NAS-Net: Enhanced Brain Tumor Segmentation in MRI and CT Images using LSTM-Autoencoder-based Neural Architecture Search. Journal of Cybersecurity and Information Management, (), 70-86. DOI: https://doi.org/10.54216/JCIM.140205
    Kumar, Santhosh. P., S.. Santhosh, R.. LSTM-NAS-Net: Enhanced Brain Tumor Segmentation in MRI and CT Images using LSTM-Autoencoder-based Neural Architecture Search. Journal of Cybersecurity and Information Management , no. (2024): 70-86. DOI: https://doi.org/10.54216/JCIM.140205
    Kumar, S. , P., S. , Santhosh, R. (2024) . LSTM-NAS-Net: Enhanced Brain Tumor Segmentation in MRI and CT Images using LSTM-Autoencoder-based Neural Architecture Search. Journal of Cybersecurity and Information Management , () , 70-86 . DOI: https://doi.org/10.54216/JCIM.140205
    Kumar S. , P. S. , Santhosh R. [2024]. LSTM-NAS-Net: Enhanced Brain Tumor Segmentation in MRI and CT Images using LSTM-Autoencoder-based Neural Architecture Search. Journal of Cybersecurity and Information Management. (): 70-86. DOI: https://doi.org/10.54216/JCIM.140205
    Kumar, S. P., S. Santhosh, R. "LSTM-NAS-Net: Enhanced Brain Tumor Segmentation in MRI and CT Images using LSTM-Autoencoder-based Neural Architecture Search," Journal of Cybersecurity and Information Management, vol. , no. , pp. 70-86, 2024. DOI: https://doi.org/10.54216/JCIM.140205