Journal of Cybersecurity and Information Management

Journal DOI

https://doi.org/10.54216/JCIM

Submit Your Paper

2690-6775ISSN (Online) 2769-7851ISSN (Print)

Volume 14 , Issue 2 , PP: 219-226, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Proposed Framework for Semantic Segmentation of Aerial Hyperspectral Images Using Deep Learning and SVM Approach

Saadya Fahad Jabbar 1 , Nuha Sami Mohsin 2 , Bourair Al-Attar 3 * , Israa Ibraheem Al_Barazanchi 4

  • 1 College of education – Ibn rushed for human science, University of Baghdad, Baghdad, Iraq - (Saadya.fahad@ircoedu.uobaghdad.edu.iq)
  • 2 College of education – Ibn rushed for human science, University of Baghdad, Baghdad, Iraq - (nuha.sami@ircoedu.uobaghdad.edu.iq)
  • 3 bourair.alattar@alameed.edu.iq - (College of Medicine, University of Al-Ameed, Karbala 1238, Iraq)
  • 4 Department of Communication Technology Engineering, College of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq - (israa.albarazanchi2023@gmail.com)
  • Doi: https://doi.org/10.54216/FPA.140218

    Received: July 24, 2023 Revised: November 29, 2023 Accepted: January 19, 2024
    Abstract

    The combination of deep neural networks and assistance vector machines for hyperspectral image recognition is presented in this work. A key issue in the real-world hyperspectral imaging system is hyperspectral picture recognition. Although deep learning can replicate highly dimensional feature vectors from source data, it comes at a high cost in terms of time and the Hugh phenomenon. The selection of the kernel feature and limit has a significant impact on the presentation of a kernel-based learning system. We introduce Support Vector Machine (SVM), a kernel learning method that is used to feature vectors obtained from deep learning on hyperspectral images. By modifying the data structure's parameters and kernel functions, the learning system's ability to solve challenging problems is enhanced. The suggested approaches' viability is confirmed by the outcomes of the experiments. At a particular rate, accuracy of testing for classification is around 90%. Moreover, to significantly make framework robust, validation is done using 5-flod verification.

    Keywords :

    Computer science , hyperspectral images , kernel , deep learning

    References

    [1]  Ashapure, A., Jung, J., Chang, A., Oh, S., Yeom, J., Maeda, M., et al. (2020). Developing a machine learning based cotton yield estimation framework using multi-temporal UAS data. ISPRS J. Photogrammetry Remote Sens. 169, 180–194.

    [2]  Barbedo, J. G. A. (2019). A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses.

    [3]  Bourland, F., and Myers, G. O. (2015). “Conventional cotton breeding,” in Cotton, eds D. D. Fang and R. G. Percy (Madison, WI: John Wiley & Sons, Ltd.), 205–228.

    [4]  Bowman, D., Bourland, F., Myers, G., Wallace, T., and Caldwell, D. (2004). Visual selection for yield in cotton breeding programs. J. Cotton Sci. 8, 62–68.

    [5]  Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

    [6]  Chu, T., Chen, R., Landivar, J., Maeda, M., Yang, C., and Starek, M. (2016). Cotton growth modeling and assessment using unmanned aircraft system visual-band imagery. J. Appl. Remote Sens. 10, 1–17

    [7]  Cortes, C., and Vapnik, V. (1995). Support vector networks. Mach. Learn. 20, 273–297.

    [8]  de Mendiburu, F., and Yaseen, M. (2020). agricolae: Statistical Procedures for Agricultural Research. R package version 1.4.0.

    [9]  Dodge, W. (2019). Image based yield estimation in cotton using UAS (Ph.D. dissertation). Texas Tech University, Lubbock, TX, United States.

    [10]   Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J., and Vapnik, V. (1996). “Support vector regression machines,” in NIPS, eds M. Mozer, M. I. Jordan, and T. Petsche (Cambridge, MA: MIT Press), 155–161.

    [11]   Y. Cui, J. Q. Wang, S. B, Liu, L. G. Wang, Hyperspectral Image Feature Reduction Based on Tabu Search Algorithm, Journal of Information Hiding & Multimedia Signal Processing, Vol. 6, No. 1, pp. 154-162, April, 2015.

    [12]   Y. Tarabalka, Classification of Hyperspectral Data Using Spectral-spatial Approaches. Numerical and Experimental Investigation of Plasticity (slip) Evolution in Notched Single Crystal Superalloy Specimens, Ph.D. Thesis, University of Iceland and Grenoble Institute of Technology, Reykjavík, Iceland, 2011.

    [13]   J. S. Pan, Y. F. Li, J. B. Li, L. Li, P. W. Tsai, Q. Su, W. Cui, Hyperspectral Imagery Classification Based on Kernel Principal Component Analysis, Tenth International Conference on Innovative Computing, Information and Control, Dalian, China, 2015, pp. 20-22.

    [14]   P. Ghamisi, J. A. Benediktsson, J. R. Sveinsson, Automatic Spectral-spatial Classification Framework Based on Attribute Profiles and Supervised Feature Extraction, IEEE Transactions on Geoscience & Remote Sensing, Vol. 52, No. 9, pp. 5771-5782, September, 2014.

    [15]   P. Ghamisi, J. A. Benediktsson, G. Cavallaro, A, Plaza, A. Automatic Framework for Spectral-spatial Classification Based on Supervised Feature Extraction and Morphological Attribute Profiles, IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, Vol. 7, No. 6, pp. 2147-2160, June, 2014.

    [16]   J. Y. Li, H. Y. Zhang, L. P. Zhang, Supervised Segmentation of Very High-Resolution Images Using Extended Morphological Attribute Profiles and a Sparse Transform, IEEE Geoscience & Remote Sensing Letters, Vol. 11, No. 8, pp. 1409-1413, August, 2014.

    [17]   . Song, J. Li, M. D. Mura, P. J. Li, A. Plaza, J. M. BioucasDias, J. A. Benediktsson, J. Chanussot, Remotely Sensed Image Classification Using Sparse Representations of Morphological Attribute Profiles, IEEE Transactions on Geoscience & Remote Sensing, Vol. 52, No. 8, pp. 5122-5136, August, 2014.

    [18]   P. Ghamisi, M. D. Mura, J. A. Benediktsson, A Survey on Spectral-spatial Classification Techniques Based on Attribute Profiles, IEEE Transactions on Geoscience & Remote Sensing, Vol. 53, No. 5, pp. 2335-2353, May, 2015.

    [19]   X. Huang, L. P. Zhang, An Svm Ensemble Approach Combining Spectral, Structural, and Semantic Features for the Classification of High-resolution Remotely Sensed Imagery, IEEE Transactions on Geoscience & Remote Sensing, Vol. 51, No. 1, pp. 257-272, January, 2013.

    [20]   R. B. Salem, K. S. Ettabaa, M. A. Hamdi, A. Spectral-spatial Classification of Hyperspectral Images Using Different Spatial Features and Composite Kernels, International Image Processing, Applications and Systems Conference, Sfax, 2015, pp. 1-7.

    [21]   G. Baudat, F. E. Anouar, Generalized Discriminant Analysis Using a Kernel Approach, Neural Computation, Vol. 12, No. 10, pp. 2385-2404, November, 2000.

    [22]   Z. Z. Liang, P. F. Shi, Uncorrelated Discriminant Vectors Using a Kernel Method, Pattern Recognition, Vol. 38, No. 2, pp. 307-310, Feburary, 2005.

    [23]   J. W. Lu, K. Plataniotis, A. N. Venetsanopoulos, Face Recognition Using Kernel Direct Discriminant Analysis Algorithms, IEEE Transactions on Neural Networks, Vol. 14, No. 1, pp. 117-226, Feburary, 2003.

    [24]   J. S. Pan, J. B. Li, Z. M. Lu, Adaptive Quasiconformal Kernel Discriminant Analysis, Neurocomputing, Vol. 71, No. 13-15, pp. 2754-2760, August, 2008.

    [25]   L. Wang, K. L. Chan, P. Xue, A Criterion for Optimizing Kernel Parameters in KBDA for Image Retrieval, IEEE Trans. Systems, Man and Cybernetics-Part B: Cybernetics, Vol. 35, No. 3, pp. 556-562, July, 2005.

    [26]   G. Camps-Valls, J. Calpe, Composite Kernels for Hyperspectral Image Classification, IEEE Geoscience & Remote Sensing Letters, Vol. 3, No. 1, pp. 93-97, January, 2006.

    [27]   A. R. W. Sait, I. Pustokhina, and M. Ilayaraja, “Mitigating DDoS Attacks in Wireless Sensor Networks using Heuristic Feature Selection with Deep Learning Model,” J. Cybersecurity Inf. Manag., vol. 0, no. 2, pp. 65–74, 2019, doi: 10.54216/jcim.000106.

    [28]   M. Elsharkawy and A. N. Al Masri, “A Novel Image Encryption with Deep Learning Model for Secure Content based Image Retrieval,” J. Cybersecurity Inf. Manag., vol. 0, no. 2, pp. 54–64, 2019, doi: 10.54216/jcim.000105.

    [29]   admin admin, “Deep Learning Model for Digital Sales Increasing and Forecasting: Towards Smart E-Commerce,” J. Cybersecurity Inf. Manag., vol. 8, no. 1, pp. 26–34, 2021, doi: 10.54216/jcim.080103.

    [30]   M. Hammoudeh and S. M. Aljaberi, “Modeling of Deep Learning based Intrusion Detection System in Internet of Things Environment,” J. Cybersecurity Inf. Manag., vol. 8, no. 1, pp. 17–25, 2021, doi: 10.54216/jcim.080102.

    Cite This Article As :
    Fahad, Saadya. , Sami, Nuha. , Al-Attar, Bourair. , Ibraheem, Israa. Proposed Framework for Semantic Segmentation of Aerial Hyperspectral Images Using Deep Learning and SVM Approach. Fusion: Practice and Applications, vol. , no. , 2024, pp. 219-226. DOI: https://doi.org/10.54216/FPA.140218
    Fahad, S. Sami, N. Al-Attar, B. Ibraheem, I. (2024). Proposed Framework for Semantic Segmentation of Aerial Hyperspectral Images Using Deep Learning and SVM Approach. Fusion: Practice and Applications, (), 219-226. DOI: https://doi.org/10.54216/FPA.140218
    Fahad, Saadya. Sami, Nuha. Al-Attar, Bourair. Ibraheem, Israa. Proposed Framework for Semantic Segmentation of Aerial Hyperspectral Images Using Deep Learning and SVM Approach. Fusion: Practice and Applications , no. (2024): 219-226. DOI: https://doi.org/10.54216/FPA.140218
    Fahad, S. , Sami, N. , Al-Attar, B. , Ibraheem, I. (2024) . Proposed Framework for Semantic Segmentation of Aerial Hyperspectral Images Using Deep Learning and SVM Approach. Fusion: Practice and Applications , () , 219-226 . DOI: https://doi.org/10.54216/FPA.140218
    Fahad S. , Sami N. , Al-Attar B. , Ibraheem I. [2024]. Proposed Framework for Semantic Segmentation of Aerial Hyperspectral Images Using Deep Learning and SVM Approach. Fusion: Practice and Applications. (): 219-226. DOI: https://doi.org/10.54216/FPA.140218
    Fahad, S. Sami, N. Al-Attar, B. Ibraheem, I. "Proposed Framework for Semantic Segmentation of Aerial Hyperspectral Images Using Deep Learning and SVM Approach," Fusion: Practice and Applications, vol. , no. , pp. 219-226, 2024. DOI: https://doi.org/10.54216/FPA.140218