Journal of Cybersecurity and Information Management

Journal DOI

https://doi.org/10.54216/JCIM

Submit Your Paper

2690-6775ISSN (Online) 2769-7851ISSN (Print)

Volume 14 , Issue 2 , PP: 211-218, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Optimal Integration of Data Fusion in Solar Power Analytics: Enhancing Efficiency and Accuracy

Darío González-Cruz 1 * , Franky Jiménez-García 2 , Javier Gamboa-Cruzado 3 , Edward R. Luna Victoria 4 , María Lima Bendezú 5 , Reem Attasi 6

  • 1 César Vallejo University, Trujillo, Peru - (darioucv@ucvvirtual.edu.pe)
  • 2 César Vallejo University, Trujillo, Peru - (fjimenezga@ucvvirtual.edu.pe)
  • 3 César Vallejo University, Trujillo, Peru; National University of San Marcos, Trujillo, Peru - (jgamboac@ucv.edu.pe)
  • 4 César Vallejo University, Trujillo, Peru - (mlima@unamba.edu.pe)
  • 5 National University Micaela Bastidas of Apurímac, Apurímac, Peru - (mlima@unamba.edu.pe)
  • 6 Higher Colleges of Technology, United Arab Emirates - (ratassi@hct.ac.ae)
  • Doi: https://doi.org/10.54216/FPA.140217

    Received: July 17, 2023 Revised: November 12, 2023 Accepted: January 17, 2024
    Abstract

    At the forefront of sustainable energy solutions lies renewable energy, particularly solar power. Nevertheless, the optimization of solar power systems necessitates comprehensive analytics, especially for proactive maintenance fault anticipation. This research evaluates data fusion techniques using both linear and non-linear regression models for predicting faults in solar power plants. The study begins with careful data preparation processes to ensure clean and harmonized data sets that include irradiation, temperature, historical fault records, and yield. Linear regression techniques provide insights into straightforward correlations while non-linear models go deep into complex relationships within the data. The results indicate positive outcomes demonstrating the potential of these fusion techniques as far as improving accuracy in fault prediction is concerned. These findings highlight the importance of refining data preparation prior to any fusion process and recommend further exploration into more advanced fusion methodologies. This paper helps advance proactive maintenance strategies for solar power plants thereby making this source of energy more dependable and resilient.

    Keywords :

    Solar Energy Analytics , Information Fusion , Photovoltaic Systems , Energy Harvesting Analysis , Multi-source Data Fusion , Solar Power Optimization , Machine Learning , Performance Enhancement.

    References

    [1]    Nweke, Henry Friday, Ying Wah Teh, Ghulam Mujtaba, and Mohammed Ali Al-garadi. 2019. “Data Fusion and Multiple Classifier Systems for Human Activity Detection and Health Monitoring: Review and Open Research Directions.” Information Fusion. https://doi.org/10.1016/j.inffus.2018.06.002.

    [2]    Muhammad, Ghulam, and M. Shamim Hossain. 2021. “COVID-19 and Non-COVID-19 Classification Using Multi-Layers Fusion From Lung Ultrasound Images.” Information Fusion. https://doi.org/10.1016/j.inffus.2021.02.013.

    [3]    Ding, Wenxiu, Xuyang Jing, Zheng Yan, and Laurence T Yang. 2019. “A Survey on Data Fusion in Internet of Things: Towards Secure and Privacy-Preserving Fusion.” Information Fusion 51: 129–44.

    [4]    Krishnamurthi, Rajalakshmi, Adarsh Kumar, Dhanalekshmi Gopinathan, Anand Nayyar, and Basit Qureshi. 2020. “An Overview of IoT Sensor Data Processing, Fusion, and Analysis Techniques.” Sensors 20 (21): 6076.

    [5]    Munir, Arslan, Jisu Kwon, Jong Hun Lee, Joonho Kong, Erik Blasch, Alexander J Aved, and Khan Muhammad. 2021. “FogSurv: A Fog-Assisted Architecture for Urban Surveillance Using Artificial Intelligence and Data Fusion.” IEEE Access 9: 111938–59.

    [6]    Himeur, Yassine, Abdullah Alsalemi, Ayman Al-Kababji, Faycal Bensaali, and Abbes Amira. 2020. “Data Fusion Strategies for Energy Efficiency in Buildings: Overview, Challenges and Novel Orientations.” Information Fusion 64: 99–120.

    [7]    Maimaitijiang, Maitiniyazi, Abduwasit Ghulam, Paheding Sidike, Sean Hartling, Matthew Maimaitiyiming, Kyle Peterson, Ethan Shavers, et al. 2017. “Unmanned Aerial System (UAS)-Based Phenotyping of Soybean Using Multi-Sensor Data Fusion and Extreme Learning Machine.” ISPRS Journal of Photogrammetry and Remote Sensing 134: 43–58.

    [8]    Sharma, Pavika, and Pawan Whig. 2023. “Maximizing Solar Energy Utilization through Predictive Machine Learning Techniques.” International Journal of Sustainable Development Through AI, ML and IoT 2 (1): 1–13.

    [9]    Hall, David Lee, and Sonya A H McMullen. 2004. Mathematical Techniques in Multisensor Data Fusion. Artech House.

    [10] Himeur, Yassine, Abdullah Alsalemi, Ayman Al-Kababji, Faycal Bensaali, Abbes Amira, Christos Sardianos, George Dimitrakopoulos, and Iraklis Varlamis. 2021. “A Survey of Recommender Systems for Energy Efficiency in Buildings: Principles, Challenges and Prospects.” Information Fusion 72: 1–21.

    [11] Dong, Jiang, Dafang Zhuang, Yaohuan Huang, and Jingying Fu. 2009. “Advances in Multi-Sensor Data Fusion: Algorithms and Applications.” Sensors 9 (10): 7771–84.

    [12] Diez-Olivan, Alberto, Javier Del Ser, Diego Galar, and Basilio Sierra. 2019. “Data Fusion and Machine Learning for Industrial Prognosis: Trends and Perspectives towards Industry 4.0.” Information Fusion 50: 92–111.

    [13] Liu, Zheng, Norbert Meyendorf, and Nezih Mrad. 2018. “The Role of Data Fusion in Predictive Maintenance Using Digital Twin.” In AIP Conference Proceedings. Vol. 1949.

    [14] Dong, Xin Luna, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Kevin Murphy, Shaohua Sun, and Wei Zhang. 2015. “From Data Fusion to Knowledge Fusion.” ArXiv Preprint ArXiv:1503.00302.

    [15] James, Alex Pappachen, and Belur V Dasarathy. 2014. “Medical Image Fusion: A Survey of the State of the Art.” Information Fusion 19: 4–19.

    [16] Ziani, Said. 2023. “Enhancing Fetal Electrocardiogram Classification: A Hybrid Approach Incorporating Multimodal Data Fusion and Advanced Deep Learning Models.” Multimedia Tools and Applications, 1–41.

    [17] Chen, Bin, Bo Huang, and Bing Xu. 2017. “Multi-Source Remotely Sensed Data Fusion for Improving Land Cover Classification.” ISPRS Journal of Photogrammetry and Remote Sensing 124: 27–39.

    [18] Ghamisi, Pedram, Behnood Rasti, Naoto Yokoya, Qunming Wang, Bernhard Hofle, Lorenzo Bruzzone, Francesca Bovolo, et al. 2019. “Multisource and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art.” IEEE Geoscience and Remote Sensing Magazine 7 (1): 6–39.

    [19] Fawzy, Dina, Sherin M Moussa, and Nagwa L Badr. 2023. “An IoT-Based Resource Utilization Framework Using Data Fusion for Smart Environments.” Internet of Things 21: 100645.

    [20] Gutiérrez, Raúl, V\’\ictor Rampérez, Horacio Paggi, Juan A Lara, and Javier Soriano. 2022. “On the Use of Information Fusion Techniques to Improve Information Quality: Taxonomy, Opportunities and Challenges.” Information Fusion 78: 102–37.

    [21] Mussina, Damira, Aidana Irmanova, Prashant K Jamwal, and Mehdi Bagheri. 2020. “Multi-Modal Data Fusion Using Deep Neural Network for Condition Monitoring of High Voltage Insulator.” IEEE Access 8: 184486–96.

    [22] Cai, Yi, Binil Starly, Paul Cohen, and Yuan-Shin Lee. 2017. “Sensor Data and Information Fusion to Construct Digital-Twins Virtual Machine Tools for Cyber-Physical Manufacturing.” Procedia Manufacturing 10: 1031–42.

    [23] Soleimani, Masoud, Hossein Naderian, Amir Hossein Afshinfar, Zoha Savari, Mahtab Tizhari, Seyed Reza Agha Seyed Hosseini, and others. 2023. “A Method for Predicting Production Costs Based on Data Fusion from Multiple Sources for Industry 4.0: Trends and Applications of Machine Learning Methods.” Computational Intelligence and Neuroscience 2023.

    [24] Fortino, Giancarlo, Stefano Galzarano, Raffaele Gravina, and Wenfeng Li. 2015. “A Framework for Collaborative Computing and Multi-Sensor Data Fusion in Body Sensor Networks.” Information Fusion 22: 50–70.

    [25] Deng, Zi-Li, Yuan Gao, Lin Mao, Yun Li, and Gang Hao. 2005. “New Approach to Information Fusion Steady-State Kalman Filtering.” Automatica 41 (10): 1695–1707.

    Cite This Article As :
    González-Cruz, Darío. , Jiménez-García, Franky. , Gamboa-Cruzado, Javier. , R., Edward. , Lima, María. , Attasi, Reem. Optimal Integration of Data Fusion in Solar Power Analytics: Enhancing Efficiency and Accuracy. Fusion: Practice and Applications, vol. , no. , 2024, pp. 211-218. DOI: https://doi.org/10.54216/FPA.140217
    González-Cruz, D. Jiménez-García, F. Gamboa-Cruzado, J. R., E. Lima, M. Attasi, R. (2024). Optimal Integration of Data Fusion in Solar Power Analytics: Enhancing Efficiency and Accuracy. Fusion: Practice and Applications, (), 211-218. DOI: https://doi.org/10.54216/FPA.140217
    González-Cruz, Darío. Jiménez-García, Franky. Gamboa-Cruzado, Javier. R., Edward. Lima, María. Attasi, Reem. Optimal Integration of Data Fusion in Solar Power Analytics: Enhancing Efficiency and Accuracy. Fusion: Practice and Applications , no. (2024): 211-218. DOI: https://doi.org/10.54216/FPA.140217
    González-Cruz, D. , Jiménez-García, F. , Gamboa-Cruzado, J. , R., E. , Lima, M. , Attasi, R. (2024) . Optimal Integration of Data Fusion in Solar Power Analytics: Enhancing Efficiency and Accuracy. Fusion: Practice and Applications , () , 211-218 . DOI: https://doi.org/10.54216/FPA.140217
    González-Cruz D. , Jiménez-García F. , Gamboa-Cruzado J. , R. E. , Lima M. , Attasi R. [2024]. Optimal Integration of Data Fusion in Solar Power Analytics: Enhancing Efficiency and Accuracy. Fusion: Practice and Applications. (): 211-218. DOI: https://doi.org/10.54216/FPA.140217
    González-Cruz, D. Jiménez-García, F. Gamboa-Cruzado, J. R., E. Lima, M. Attasi, R. "Optimal Integration of Data Fusion in Solar Power Analytics: Enhancing Efficiency and Accuracy," Fusion: Practice and Applications, vol. , no. , pp. 211-218, 2024. DOI: https://doi.org/10.54216/FPA.140217