Journal of Cybersecurity and Information Management

Journal DOI

https://doi.org/10.54216/JCIM

Submit Your Paper

2690-6775ISSN (Online) 2769-7851ISSN (Print)

Volume 14 , Issue 2 , PP: 89-96, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Fusion of Brain Imaging Data with Artificial Intelligence to detect Autism Spectrum Disorder

Monalin Pal 1 * , Rubini P. 2

  • 1 CMR University (CMRU), Bangalore, India - (monalin.19cphd@cmr.edu.in)
  • 2 CMR University (CMRU), Bangalore, India - (rubini.p@cmr.edu.in)
  • Doi: https://doi.org/10.54216/FPA.140207

    Received: August 29, 2023 Revised: November 17, 2023 Accepted: January 17, 2024
    Abstract

    Autism, a developmental and neurological disorder, impacts communication, interaction, and behavior, setting individuals with it apart from those without. This spectrum disorder affects various aspects of an individual's life, including social, cognitive, emotional, and physical health. Early detection and intervention are crucial for symptom reduction and facilitating learning and development. Recent advancements in machine learning and deep learning have facilitated the diagnosis of Autism by analyzing brain signals. This current study introduces an approach for Autism detection utilizing functional Magnetic Resonance Imaging (fMRI) data. The Autism Brain Imaging Data Exchange (ABIDE) dataset serves as the foundation, employing hierarchical graph pooling to abstract brain images into a graph structure. Graph Convolutional Networks are then used to learn node embeddings derived from sparse feature vectors. The model attains an accuracy of 87% on the 10-fold cross-validation dataset. This study proves to be cost-effective and efficient in identifying Autism through fMRI, making it suitable for near real-time applications.

    Keywords :

    Deep Learning , Machine Learning , Autism Spectrum Disorder , Speech Recognition , Fusion Processing , Information Fusion , Neural networks , Convolutional Neural Network , functional Magnetic Resonance Imaging (fMRI) , Autism Brain Imaging Data Exchange (ABIDE)

    References

    [1]    W. H. O., “From: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders”,  2023.

    [2]    Lord, C.; Rutter, M.; Goode, S.; Heemsbergen, J.; Jordan, H.; Mawhood, L.; Schopler, E. Austism diagnostic observation schedule: A standardized observation of communicative and social behavior. J. Autism Dev. Disord. 1989, 19, 185–212.

    [3]    Lord, C.; Rutter, M.; Goode, S.; Heemsbergen, J.; Jordan, H.; Mawhood, L.; Schopler, E. Austism diagnostic observation schedule:A standardized observation of communicative and social behavior. J. Autism Dev. Disord. 1989, 19, 185–212.

    [4]    Riddle, K.; Cascio, C.;Woodward, N. Brain structure in autism: A voxel-based morphometry analysis of the autism brain imaging database exchange (ABI DE). Brain Imaging Behav. 2016, 11, 541–551.

    [5]    Nielsen, J.; Zielinski, B.; Fletcher, P.; Alexander, A.; Lange, N.; Bigler, E.; Lainhart, J.; Anderson, J. Multisite functional connectivity MRI classification of autism: ABIDE results. Front. Hum. Neurosci. 2013, 7, 599.

    [6]    Heinsfeld, A.; Franco, A.; Craddock, R.; Buchweitz, A.; Meneguzzi, F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clin. 2018, 17, 16–23.

    [7]    38. Eslami, T.; Mirjalili, V.; Fong, A.; Laird, A.; Saeed, F. ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data. Front. Neuroinform. 2019, 13, 70.

    [8]    [Online]. Available: http://fcon1000.projects.nitrc.org/indi/abide/ (accessed on 23 February 2023).

    [9]    C. Craddock, Y. Benhajali, C. Chu, F. Chouinard, A. Evans, A. Jakab, B. S. Khundrakpam, J. D. Lewis, Q. Li, M. Milham et al., “The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives,” Frontiers in Neuroinformatics, vol. 7, 2013.

    [10] Pan, Li et al. “Identifying Autism Spectrum Disorder Based on Individual-Aware Down-Sampling and Multi-Modal Learning.” ArXiv abs/2109.09129 (2021): n. pag.

    [11] M. J. Maenner, K. A. Shaw, J. Baio et al., “Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, united states, 2016,” MMWR Surveillance Summaries, vol. 69, no. 4, p. 1, 2020.

    [12] L. Crane, J. W. Chester, L. Goddard, L. A. Henry, and E. Hill, “Experiences of autism diagnosis: A survey of over 1000 parents in the united kingdom,” Autism, vol. 20, no. 2, pp. 153–162, 2016.

    [13] D. P. Carmody and M. Lewis, “Regional white matter development in children with autism spectrum disorders,” Developmental psychobiology, vol. 52, no. 8, pp. 755–763, 2010.

    [14] M. E. Villalobos, A. Mizuno, B. C. Dahl, N. Kemmotsu, and R.-A. Müller, “Reduced functional connectivity between v1 and inferior frontal cortex associated with visuomotor performance in autism,” Neuroimage, vol. 25, no. 3, pp. 916–925, 2005.

    [15] N. C. Dvornek, P. Ventola, K. A. Pelphrey, and J. S. Duncan, “Identifying autism from resting-state fmri using long short-term memory networks,” in International Workshop on Machine Learning in Medical Imaging. Springer, 2017, pp. 362–370.

    [16] A. S. Heinsfeld, A. R. Franco, R. C. Craddock, A. Buchweitz, and F. Meneguzzi, “Identification of autism spectrum disorder using deep learning and the abide dataset,” NeuroImage: Clinical, vol. 17, pp. 16–23, 2018.

    [17] Z. Sherkatghanad, M. Akhondzadeh, S. Salari, M. Zomorodi-Moghadam, M. Abdar, U. R. Acharya, R. Khosrowabadi, and V. Salari, “Automated detection of autism spectrum disorder using a convolutional neural network,” Frontiers in neuroscience, vol. 13, p. 1325, 2020.

    [18] M. Khosla, K. Jamison, A. Kuceyeski, and M. R. Sabuncu, “3d convolutional neural networks for classification of functional connectomes,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, 2018, pp. 137–145.

    [19] S. Parisot, S. I. Ktena, E. Ferrante, M. Lee, R. Guerrero, B. Glocker, and D. Rueckert, “Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease,” Medical image analysis, vol. 48, pp. 117–130, 2018.

    [20] J. A. Nielsen, B. A. Zielinski, P. T. Fletcher, A. L. Alexander, N. Lange, E. D. Bigler, J. E. Lainhart, and J. S. Anderson, “Multisite functional connectivity mri classification of autism: Abide results,” Frontiers in human neuroscience, vol. 7, p. 599, 2013.

    [21] A. Abraham, M. P. Milham, A. Di Martino, R. C. Craddock, D. Samaras, B. Thirion, and G. Varoquaux, “Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example,” NeuroImage, vol. 147, pp. 736–745, 2017.

    [22] A. Kazeminejad and R. C. Sotero, “The importance of anti-correlations in graph theory based classification of autism spectrum disorder,” Frontiers in neuroscience, vol. 14, p. 676, 2020.

    [23] S. Mostafa, L. Tang, and F.-X. Wu, “Diagnosis of autism spectrum disorder based on eigenvalues of brain networks,” IEEE Access, vol. 7, pp. 128 474–128 486, 2019.

    [24] Y. Wang, J. Wang, F.-X. Wu, R. Hayrat, and J. Liu, “Aimafe: autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning,” Journal of Neuroscience Methods, p. 108840, 2020.

    [25] J. Liu, Y. Sheng, W. Lan, R. Guo, Y. Wang, and J. Wang, “Improved asd classification using dynamic functional connectivity and multi-task feature selection,” Pattern Recognition Letters, vol. 138, pp. 82–87, 2020.

    [26] A. A. Sáenz, M. Septier, P. Van Schuerbeek, S. Baijot, N. Deconinck, P. Defresne, V. Delvenne, G. Passeri, H. Raeymaekers, L. Salvesen et al., “Adhd and asd: distinct brain patterns of inhibition-related activation?” Translational psychiatry, vol. 10, no. 1, pp. 1–10, 2020.

    [27] G. J. Harris, C. F. Chabris, J. Clark, T. Urban, I. Aharon, S. Steele, L. McGrath, K. Condouris, and H. TagerFlusberg, “Brain activation during semantic processing in autism spectrum disorders via functional magnetic resonance imaging,” Brain and cognition, vol. 61, no. 1, pp. 54–68, 2006.

    [28] N. Hadjikhani, R. M. Joseph, J. Snyder, and H. Tager-Flusberg, “Abnormal activation of the social brain during face perception in autism,” Human brain mapping, vol. 28, no. 5, pp. 441–449, 2007.

    [29] S.-Y. Kim, U.-S. Choi, S.-Y. Park, S.-H. Oh, H.-W. Yoon, Y.-J. Koh, W.-Y. Im, J.-I. Park, D.-H. Song, K.-A. Cheon et al., “Abnormal activation of the social brain network in children with autism spectrum disorder: an fmri study,” Psychiatry investigation, vol. 12, no. 1, p. 37, 2015.

    [30] S. I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee, B. Glocker, and D. Rueckert, “Metric learning with spectral graph convolutions on brain connectivity networks,” NeuroImage, vol. 169, pp. 431–442, 2018.

    [31] Belhaouari SB, Talbi A, Hassan S, Al-Thani D, Qaraqe M. PFT: A Novel Time-Frequency Decomposition of BOLD fMRI Signals for Autism Spectrum Disorder Detection. Sustainability. 2023; 15(5):4094. https://doi.org/10.3390/su15054094.

    [32] Xin Deng, Jiahao Zhang, Rui Liu, Ke Liu, Classifying ASD based on time-series fMRI using spatial–temporal transformer, Computers in Biology and Medicine, Volume 151, Part B, 2022, 106320, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2022.106320. (https://www.sciencedirect.com/science/article/pii/S0010482522010289).

          [33] Khiani, S.; Mohamed Iqbal, M.; Dhakne, A.; Sai Thrinath, B.; Gayathri, P.; Thiagarajan, R. An  effectual IOT coupled EEG analysing model for continuous patient monitoring. Meas. Sens.  2022, 24, 100597.

    Cite This Article As :
    Pal, Monalin. , P., Rubini. Fusion of Brain Imaging Data with Artificial Intelligence to detect Autism Spectrum Disorder. Fusion: Practice and Applications, vol. , no. , 2024, pp. 89-96. DOI: https://doi.org/10.54216/FPA.140207
    Pal, M. P., R. (2024). Fusion of Brain Imaging Data with Artificial Intelligence to detect Autism Spectrum Disorder. Fusion: Practice and Applications, (), 89-96. DOI: https://doi.org/10.54216/FPA.140207
    Pal, Monalin. P., Rubini. Fusion of Brain Imaging Data with Artificial Intelligence to detect Autism Spectrum Disorder. Fusion: Practice and Applications , no. (2024): 89-96. DOI: https://doi.org/10.54216/FPA.140207
    Pal, M. , P., R. (2024) . Fusion of Brain Imaging Data with Artificial Intelligence to detect Autism Spectrum Disorder. Fusion: Practice and Applications , () , 89-96 . DOI: https://doi.org/10.54216/FPA.140207
    Pal M. , P. R. [2024]. Fusion of Brain Imaging Data with Artificial Intelligence to detect Autism Spectrum Disorder. Fusion: Practice and Applications. (): 89-96. DOI: https://doi.org/10.54216/FPA.140207
    Pal, M. P., R. "Fusion of Brain Imaging Data with Artificial Intelligence to detect Autism Spectrum Disorder," Fusion: Practice and Applications, vol. , no. , pp. 89-96, 2024. DOI: https://doi.org/10.54216/FPA.140207