Journal of Cybersecurity and Information Management

Journal DOI

https://doi.org/10.54216/JCIM

Submit Your Paper

2690-6775ISSN (Online) 2769-7851ISSN (Print)

Volume 14 , Issue 2 , PP: 43-55, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Analysis of EEG signals with the use of wavelet transform for accurate classification of Alzheimer Disease, Frontotemporal Dementia and healthy subjects using Machine Learning Models

Akanksha Parihar 1 * , Preety D Swami 2

  • 1 Department of Electronics and Communication, UIT-RGPV, Bhopal, India - (akanksha14parihar@gmail.com)
  • 2 Department of Electronics and Communication, UIT-RGPV, Bhopal, India - (preetydswami@rgpv.ac.in)
  • Doi: https://doi.org/10.54216/FPA.140203

    Received: August 03, 2023 Revised: November 12, 2023 Accepted: January 13, 2024
    Abstract

    Dementia is a brain disorder, if not prevented; takes the form of various types of diseases that have no cure yet. Accurate classification of multiple types of dementia diseases is required to provide proper medication to the patient so that growth of that disease can be delayed. This study analyzes EEG signal for the classification of multiple dementia diseases such as Alzheimer’s disease (AD), Fronto-temporal dementia (FTD) and control normal (CN) subjects using machine learning (ML) algorithms. Each of the 19 channels of EEG dataset is analyzed separately in this work to perform the classification. Combination of parameters like Hjorth Activity, Mobility and Complexity along with kurtosis value of the data has been extracted in time-frequency domain for each EEG frequency band (Delta, Theta, Alpha, Beta and Gamma) is applied to the machine learning algorithms. This research is focused on classification of multiple dementia classes (ADvsFTD) as well as three-way (ADvsFTDvsCN) classification. This research is validated using public EEG dataset with 23 participants of each category. Best classification result is achieved using random forest classifier and leave-one-subject-out (LOSO) cross validation method. The three-way classification i.e., ADvsCNvsFTD achieved best accuracy of 75.29%, whereas binary classifications i.e. ADvsCN, ADvsFTD and CNvsFTD achieved best accuracy of 88.90%, 88.44% and 84.10% respectively. The proposed framework shows better results than existing work on dementia classification using machine learning. The results obtained from proposed framework showed that combination of EEG frequency band features can be utilized for the classification of multiple dementia diseases with greater accuracy.

    Keywords :

    Alzheimers Disease , Frontotemporal Dementia , EEG , Continuous Wavelet Transform , Time-frequency domain analysis , Feature extraction , Classification , Machine Learning , Cross Validation

    References

    [1]. Fiscon, G., Weitschek, E., Cialini, A., Felici, G., Bertolazzi, P., De Salvo, S., Bramanti, A., Bramanti, P., De Cola, M.,C., Combining EEG signal processing with supervised methods for Alzheimer's patients classification. BMC Med Inform Decis Mak. 2018 May 31;18(1):35. doi: 10.1186/s12911-018-0613-y. PMID: 29855305; PMCID: PMC5984382.

    [2]. Safi, M. S., Safi, S. M. M., Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters, Biomedical Signal Processing and Control, Volume 65, 2021, 102338, ISSN 1746-8094, https://doi.org/10.1016/j.bspc.2020.102338.

    [3]. Ahmed, M. R., Zhang, Y., Feng, Z., Lo, B., Inan, O. T., Liao, H., Neuroimaging and Machine Learning for Dementia Diagnosis: Recent Advancements and Future Prospects. IEEE Rev Biomed Eng. 2019;12:19-33. doi: 10.1109/RBME.2018.2886237. Epub 2018 Dec 11. PMID: 30561351.

    [4]. Nguyen, H. D., Clément, M., Planche, V., Mansencal, B., & Coupé, P. (2022). Deep grading for MRI-based differential diagnosis of Alzheimer's disease and Frontotemporal dementia. arXiv preprint arXiv:2211.14096.

     [5]. Miltiadous, A., Tzimourta, K.D., Giannakeas, N., Tsipouras, M.G., Afrantou, T., Ioannidis, P., Tzallas, A.T., Alzheimer’s Disease and Frontotemporal Dementia: A Robust Classification Method of EEG Signals and a Comparison of Validation Methods. Diagnostics 2021, 11, 1437. https://doi.org/10.3390/diagnostics11081437

    [6]. Bang, J., Spina, S., Miller, B. L., Frontotemporal dementia. Lancet. 2015 Oct 24;386(10004):1672-82. doi: 10.1016/S0140-6736(15)00461-4. PMID: 26595641; PMCID: PMC5970949.

    [7]. Uysal, G., Ozturk, M., Hippocampal atrophy based Alzheimer’s disease diagnosis via machine learning methods, Journal of Neuroscience Methods, Volume 337, 2020, 108669, ISSN 0165-0270, https://doi.org/10.1016/j.jneumeth.2020.108669.

    [8]. Kavitha, C., Mani, V., Srividhya, S. R., Khalaf O. I., Tavera Romero C. A., Early-Stage Alzheimer's Disease Prediction Using Machine Learning Models. Front Public Health. 2022 Mar 3;10:853294. doi: 10.3389/fpubh.2022.853294. PMID: 35309200; PMCID: PMC8927715.

    [9]. Hosseini, M. P., Hosseini, A. and Ahi, K., A Review on Machine Learning for EEG Signal Processing in Bioengineering, in Reviews in Biomedical Engineering, vol. 14, pp. 204-218, 2021, doi: 10.1109/RBME.2020.2969915.

    [10]. Nardone, R,, Sebastianelli, L,, Versace, V., Saltuari L,, Lochner P,, Frey V,, Golaszewski S, Brigo F, Trinka E, Höller Y. Usefulness of EEG Techniques in Distinguishing Frontotemporal Dementia from Alzheimer's Disease and Other Dementias. Dis Markers. 2018 Sep 3;2018:6581490. doi: 10.1155/2018/6581490. PMID: 30254710; PMCID: PMC6140274.

    [11]. Tzimourta, K. D., Afrantou, T., Ioannidis, P., Karatzikou, M., Tzallas, A. T., Giannakeas, N., Astrakas, L. G., Angelidis, P., Glavas, E., Grigoriadis, N., Tsalikakis, D. G., Tsipouras, M. G., Analysis of electroencephalographic signals complexity regarding Alzheimer's Disease, Computers & Electrical Engineering, Volume 76, 2019, Pages 198-212, ISSN 0045-7906, https://doi.org/10.1016/j.compeleceng.2019.03.018.

    [12]. Martin, D., Sedeño, L., Caro, M., Alifano, F., Hesse, E., Mikulan, E., García, A. M., Ruiz-Tagle, A., Lillo, P., Slachevsky, A., Cerrano, C., Fraiman, D., Ibanez, A., (2017). Towards affordable biomarkers of frontotemporal dementia: A classification study via network's information sharing. Scientific Reports. 7. 10.1038/s41598-017-04204-8.

    [13]. Perez-Valero, E., Lopez-Gordo, M. Á., Gutiérrez, C. M., Carrera-Muñoz, I., Vílchez-Carrillo, R. M., A self-driven approach for multi-class discrimination in Alzheimer's disease based on wearable EEG. Comput Methods Programs Biomed. 2022 Jun;220:106841. doi: 10.1016/j.cmpb.2022.106841. Epub 2022 Apr 27. PMID: 35523023.

    [14]. Doan, D. N. T., Ku, B., Choi, J., Oh, M., Kim, K., Cha, W., Kim, J. U., Predicting Dementia With Prefrontal Electroencephalography and Event-Related Potential. Front Aging Neurosci. 2021 Apr 13;13:659817. doi: 10.3389/fnagi.2021.659817. PMID: 33927610; PMCID: PMC8077968.

    [15]. Miltiadous, A.; Tzimourta, K.D.; Afrantou, T.; Ioannidis, P.; Grigoriadis, N.; Tsalikakis, D.G.; Angelidis, P.; Tsipouras, M.G.; Glavas, E.; Giannakeas, N.; et al. A Dataset of Scalp EEG Recordings of Alzheimer’s Disease, Frontotemporal Dementia and Healthy Subjects from Routine EEG. Data 20238, 95. https://doi.org/10.3390/data8060095

    [16]. Al-Qazzaz NK, Ali SH, Ahmad SA, Chellappan K, Islam MS, Escudero J. Role of EEG as biomarker in the early detection and classification of dementia. ScientificWorldJournal. 2014;2014:906038. doi: 10.1155/2014/906038. Epub 2014 Jun 30. PMID: 25093211; PMCID: PMC4100295.

    [17]. Miltiadous, A., Gionanidis, E., Tzimourta, K. D., Giannakeas, N., and Tzallas A. T., DICE-Net: A Novel Convolution-Transformer Architecture for Alzheimer Detection in EEG Signals, in IEEE Access, vol. 11, pp. 71840-71858, 2023, doi: 10.1109/ACCESS.2023.3294618.

    [18]. Silik, A., Noori, M., Altabey, W. A., Ghiasi, R., & Wu, Z. (2021). Comparative analysis of wavelet transform for time-frequency analysis and transient localization in structural health monitoring. Structural Durability & Health Monitoring15(1), 1.

    [19]. Movahed, R. A., Jahromi, G. P., Shahyad, S., Meftahi, G. H., A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis, Journal of Neuroscience Methods, Volume 358, 2021, 109209, ISSN 0165-0270, https://doi.org/10.1016/j.jneumeth.2021.109209.

    [20]. Jha, R.K., Swami, P.D. Failure prognosis of rolling bearings using maximum variance wavelet subband selection and support vector regression. J Braz. Soc. Mech. Sci. Eng. 44, 49 (2022). https://doi.org/10.1007/s40430-021-03345-2

    [21]. Swami, P. D. and Jain, A., Segmentation Based Combined Wavelet-Curvelet Approach for Image Denoising, International Journal of Information Engineering, vol.2, no. 1, pp. 32-37, 2225-8442, Mar. 2012.

    [22]. Lilly J. M. an Olhede S. C., Higher-Order Properties of Analytic Wavelets, in IEEE Transactions on Signal Processing, vol. 57, no. 1, pp. 146-160, Jan. 2009, doi: 10.1109/TSP.2008.2007607.

    [23]. García-Gutierrez, F., Díaz-Álvarez, J., Matias-Guiu, J.A. et al. GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer’s disease and frontotemporal dementia using genetic algorithms. Med Biol Eng Comput 60, 2737–2756 (2022). https://doi.org/10.1007/s11517-022-02630-z

    [24]. Sharma, N., Kolekar, M. H., Jha, K., EEG based dementia diagnosis using multi-class support vector machine with motor speed cognitive test, Biomedical Signal Processing and Control, Volume 63, 2021, 102102, ISSN 1746-8094, https://doi.org/10.1016/j.bspc.2020.102102.

    [25]. Hjorth, B., EEG analysis based on time domain properties, Electroencephalography and Clinical Neurophysiology, Volume 29, Issue 3, 1970, Pages 306-310, ISSN 0013-4694, https://doi.org/10.1016/0013-4694(70)90143-4.

    [26]. Wang, G, Shepherd, S. J., Beggs, C. B., Rao, N., Zhang, Y., The use of kurtosis de-noising for EEG analysis of patients suffering from Alzheimer's disease. Biomed Mater Eng. 2015;26 Suppl 1:S1135-48. doi: 10.3233/BME-151410. PMID: 26405871.

    [27]. Tavares, G., San-Martin, R., Ianof, J, N., R. Anghinah and F. J. Fraga, Improvement in the automatic classification of Alzheimer’s disease using EEG after feature selection, 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 2019, pp. 1264-1269, doi: 10.1109/SMC.2019.8914006.

    [28]. Wong T., Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation, Pattern Recognition, Volume 48, Issue 9, 2015, Pages 2839-2846, ISSN 0031-3203, https://doi.org/10.1016/j.patcog.2015.03.009.

    [29]. Pérez-Millan A, Contador J, Juncà-Parella J, Bosch B, Borrell L, Tort-Merino A, Falgàs N, Borrego-Écija S, Bargalló N, Rami L, Balasa M, Lladó A, Sánchez-Valle R, Sala-Llonch R. Classifying Alzheimer's disease and frontotemporal dementia using machine learning with cross-sectional and longitudinal magnetic resonance imaging data. Hum Brain Mapp. 2023 Apr 15;44(6):2234-2244. doi: 10.1002/hbm.26205. Epub 2023 Jan 20. PMID: 36661219; PMCID: PMC10028671.

    [30]. Kim, J.P., Kim, J., Park, Y. H., Park, S. B., Lee, J. S., Yoo, S., Kim, E. J., Kim,  H. J., Na, D. L., Brown JA, Lockhart SN, Seo SW, Seong JK. Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease. Neuroimage Clin. 2019;23:101811. doi: 10.1016/j.nicl.2019.101811. Epub 2019 Apr 3. PMID: 30981204; PMCID: PMC6458431.

    [31]. Maito, M. A., Santamaría-García, H., Moguilner, S., Possin, K. L., Godoy, M. E., Avila-Funes, J.A., Behrens, M. I., Brusco, I. L., Bruno, M. A., Cardona, J., F., Custodio N, García AM, Javandel S, Lopera F, Matallana DL, Miller B, de Oliveira MO, Pina-Escudero SD, Slachevsky A, Ortiz ALS, Takada LT, Tagliazuchi E, Valcour V, Yokoyama JS, Ibañez A. Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study. Lancet Reg Health Am. 2023 Jan;17:100387. doi: 10.1016/j.lana.2022.100387. Epub 2022 Nov 3. PMID: 36583137; PMCID: PMC9794191.

    [32]. Hu, J., Qing, Z., Liu, R., Zhang, X., Lv, P., Wang, M., Wang, Y., He, K., Gao, Y., Zhang, B., Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease. Front Neurosci. 2021 Jan 21;14:626154. doi: 10.3389/fnins.2020.626154. PMID: 33551735; PMCID: PMC7858673.

    [33]. Ma, D., Lu, D., Popuri, K., Wang, L., Beg, M. F., Alzheimer's Disease Neuroimaging Initiative. Differential Diagnosis of Frontotemporal Dementia, Alzheimer's Disease, and Normal Aging Using a Multi-Scale Multi-Type Feature Generative Adversarial Deep Neural Network on Structural Magnetic Resonance Images. Front Neurosci. 2020 Oct 22;14:853. doi: 10.3389/fnins.2020.00853. PMID: 33192235; PMCID: PMC7643018.

    [34]. Parihar A., Swami P D. EEG Classification of Alzheimer’s Disease, Frontotemporal Dementia and Control Normal Subjects using Supervised Machine Learning Algorithms on various EEG Frequency Bands. IJSTM, Volume 12, Issue No. 06, June 2023.

    Cite This Article As :
    Parihar, Akanksha. , D, Preety. Analysis of EEG signals with the use of wavelet transform for accurate classification of Alzheimer Disease, Frontotemporal Dementia and healthy subjects using Machine Learning Models. Fusion: Practice and Applications, vol. , no. , 2024, pp. 43-55. DOI: https://doi.org/10.54216/FPA.140203
    Parihar, A. D, P. (2024). Analysis of EEG signals with the use of wavelet transform for accurate classification of Alzheimer Disease, Frontotemporal Dementia and healthy subjects using Machine Learning Models. Fusion: Practice and Applications, (), 43-55. DOI: https://doi.org/10.54216/FPA.140203
    Parihar, Akanksha. D, Preety. Analysis of EEG signals with the use of wavelet transform for accurate classification of Alzheimer Disease, Frontotemporal Dementia and healthy subjects using Machine Learning Models. Fusion: Practice and Applications , no. (2024): 43-55. DOI: https://doi.org/10.54216/FPA.140203
    Parihar, A. , D, P. (2024) . Analysis of EEG signals with the use of wavelet transform for accurate classification of Alzheimer Disease, Frontotemporal Dementia and healthy subjects using Machine Learning Models. Fusion: Practice and Applications , () , 43-55 . DOI: https://doi.org/10.54216/FPA.140203
    Parihar A. , D P. [2024]. Analysis of EEG signals with the use of wavelet transform for accurate classification of Alzheimer Disease, Frontotemporal Dementia and healthy subjects using Machine Learning Models. Fusion: Practice and Applications. (): 43-55. DOI: https://doi.org/10.54216/FPA.140203
    Parihar, A. D, P. "Analysis of EEG signals with the use of wavelet transform for accurate classification of Alzheimer Disease, Frontotemporal Dementia and healthy subjects using Machine Learning Models," Fusion: Practice and Applications, vol. , no. , pp. 43-55, 2024. DOI: https://doi.org/10.54216/FPA.140203