176 103
Full Length Article
Volume 5 , Issue 1, PP: 29-42 , 2021

Title

Information Security Assessment in Big Data Environment using Fuzzy Logic

Authors Names :   Kanika Sharma   1 *     Achyut Shankar   2     Prabhishek Singh   3  

1  Affiliation :  

    Email :  Sharma.kanika247@gmail.com


2  Affiliation :  

    Email :  ashankar2711@gmail.com


3  Affiliation :  

    Email :  psingh29@amity.edu



Doi   :  DOI: 10.5281/zenodo.4099734

( Received: June 16, 2020 , Revised: August 27, 2020, Accepted: October 9, 2020)

Abstract :

In recent years, it has been observed that disclosure of information leads to the risk. Without restrict the accessibility of information providing security is difficult. So, there is a demand of time to fill the gap between security and accessibility of information. In fact, security tools should be usable for improving the security as well as the accessibility of information. Though security and accessibility are not related directly, but some of their factors indirectly affect each other. Attributes play an important role in connecting the gap among security and accessibility. In this paper, finds the main attributes of security and accessibility that impact directly and indirectly each other such as confidentiality, integrity and availability and severity. The significance of every attribute in terms of their weight is important for their effect on the overall security during the big data security life cycle process. To calculate proposed work, researchers used the Fuzzy Analytic Hierarchy Process (Fuzzy AHP).

Keywords :

Information Security , Big Data , Big Data Security Life Cycle , Fuzzy AHP

References :

 

1.    Sharma, K., Agrawal, A., Pandey, D., Khan, R. A., & Dinkar, S. K. (2019). RSA based encryption approach for preserving confidentiality of big data. Journal of King Saud University-Computer and Information Sciences. 2.    Ak, M. F., & Gul, M. (2019). AHP–TOPSIS integration extended with Pythagorean fuzzy sets for information security risk analysis. Complex & Intelligent Systems, 5(2), 113-126. 3.    Kanika, A., & Khan, R. A. (2018). An Improved Security Threat Model for Big Data Life Cycle. Asian Journal of Computer Science and Technology, 7(1), 33-39. 4.    Mohammadian, M., & Hatzinakos, D. (2017). A hierarchical fuzzy logic systems frame work for data security. International Journal of Information Technology, 9(2), 147-157. 5.    R. Agrawal and R. Srikant, “Privacy Preserving Data Mining. ACM SIGMOD”, Proceedings of International Conference on Management of Data, pp. 439-450, 2000. 6.    B. Pinkas, “Cryptographic Techniques for PrivacyPreserving Data Mining”, Available at: http://www.pinkas.net/PAPERS/sigkdd.pdf 7.    S. Verykios et al., “State of the-Art in Privacy Preserving Data Mining”, ACM SIGMOD Record, Vol. 33, No. 1, pp. 50-57, 2004. 8.    J. Brickell and V. Shmatikov, “Privacy-Preserving Classifier Learning”, Proceedings of 13th International Conference on Financial Cryptography and Data Security, pp. 1-6, 2009. 9.    M. Upmanyu, A.M. Namboodiri, K. Srinathan and C.V. Jawahar, “Efficient Privacy Preserving K-Means Clustering”, Proceedings of Pacific-Asia Workshop on Intelligence and Security Informatics, pp. 154-166, 2010. 10.                       G. Jagannathan and R.N. Wright, “Privacy-Preserving Distributed k-Means Clustering over Arbitrarily Partitioned Data”, Proceedings of 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 593-599, 2005. 11.                       P. Bunn and R. Ostrovsky, “Secure Two-Party K-Means Clustering”, Proceedings of ACM International Conference on Computer and Communications Security, pp. 486-497, 2007. 12.                       Ozdemir, Y., Gul, M., & Celik, E. (2017). Assessment of occupational hazards and associated risks in fuzzy environment: A case study of a university chemical laboratory. Human and Ecological Risk Assessment: An International Journal, 23(4), 895-924. 13.                       Sutrisno, A., Gunawan, I., & Tangkuman, S. (2015). Modified failure mode and effect analysis (FMEA) model for accessing the risk of maintenance waste. Procedia Manufacturing, 4, 23-29. 14.                       Mohsen, O., & Fereshteh, N. (2017). An extended VIKOR method based on entropy measure for the failure modes risk assessment–A case study of the geothermal power plant (GPP). Safety science, 92, 160-172. 15.                       Fattahi, R., & Khalilzadeh, M. (2018). Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment. Safety science, 102, 290-300. 16.                       Jagwani, P., & Kaushik, S. (2017, March). Privacy in Location Based Services: Protection Strategies, Attack Models and Open Challenges. In International Conference on Information Science and Applications (pp. 12-21). Springer, Singapore. 17.                       Duckham, M., Kulik, L., 2005. A formal model of obfuscation and negotiation for location privacy.Pervasive Computing, 243–251. 18.                       Lin C, Jeng FL, Lee CS, Raghavan R (1997) Hierarchical fuzzy logic water-level control in advanced boiling water reactors. Nucl Technol 118:254–262. 19.                        IBM (2014) What is data security and privacy—overview. http:// www-01.ibm.com/software/data/security-privacy/. Accessed 13 June 2017. 20.                       Beckles, B., Welch, V., Basney, J., 2005. Mechanisms for increasing the usability of grid security. Int. J. Human Comput. Stud. 63 (12), 74–101. Buckley, J.J., 1985. Fuzzy hierarchical analysis. Fuzzy Sets Syst. 17. 21.                       Pérez-Domínguez, L., Rodríguez-Picón, L. A., Alvarado-Iniesta, A., Luviano Cruz, D., & Xu, Z. (2018). MOORA under Pythagorean fuzzy set for multiple criteria decision making. Complexity, 2018. 22.                       Deng, H. (1999). Multicriteria analysis with fuzzy pairwise comparison. International journal of approximate reasoning, 21(3), 215-231. 23.                       Ak, M. F., & Gul, M. (2019). AHP–TOPSIS integration extended with Pythagorean fuzzy sets for information security risk analysis. Complex & Intelligent Systems, 5(2), 113-126. 24.                       Shyamal, A. K., & Pal, M. (2007). Triangular fuzzy matrices. 25.                       Voskoglou, M. (2015). Use of the triangular fuzzy numbers for student assessment. arXiv preprint arXiv:1507.03257. 26.                       Agrawal, A., Alenezi, M., Khan, S. A., Kumar, R., & Khan, R. A. (2019). Multi-level Fuzzy system for usable-security assessment. Journal of King Saud University-Computer and Information Sciences. 27.                       Dymova, L., Sevastjanov, P., & Tikhonenko, A. (2015). An interval type-2 fuzzy extension of the TOPSIS method using alpha cuts. Knowledge-BasedSystems  83, 116-127. 28.                       Azar, A., and Darvishi, Z. A., Development and validation of a measure of justice perception in the frame of fairness theory—fuzzy approach. Expert Syst. Appl. 38:7364–7372, 2011. 29.                       Carrasco, R. A., Muñoz-Leiva, F., Sánchez-Fernández, J., and Liébana-Cabanillas, F. J., A model for the integration of e-financial services questionnaires with SERVQUAL scales under fuzzy linguistic modeling. Expert Syst. Appl. 39:11535–11547, 2012.   30.                       Chan, M., Woon, I., and Kankanhalli, A., Perceptions of information security at the workplace: linking information security climate to compliant behavior. Journal of Information Privacy and Security 1(3):18–41, 2005. 31.                       Zhang, J., Reithel, B. J., and Li, H., Impact of perceived technical protection on security behaviors. Information Management & Computer Security 17(4):330–340, 2009. 32.                       P. Tuyls and J. Goseling. Capacity and examples of template protecting biometric authentication systems. In LNCS, editor, Biometric authentication workshop (BioAW 2004), number 3087, pages 158–170, Prague, 2004. T. Ignatenko. Secret-Key Rates and Privacy Leakage in Biometric Systems. PhD thesis, Eindhoven University of Technology, 200