International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 17 , Issue 1 , PP: 08- 29, 2021 | Cite this article as | XML | Html | PDF | Full Length Article

Multicriteria Decision-Making Applications Based on Generalized Hamming Measure for Law

Necmiye Merve Sahin 1 * , Azize Dayan 2

  • 1 Faculty of Law, Hasan Kalyoncu University, Gaziantep 27410, Turkey - (necmiyemerve.sahin@gmail.com)
  • 2 Department of Mathematics, Gaziantep University, Gaziantep27310-Turkey - (azizedayan853@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.170101

    Received: August 30, 2021 Accepted: November 29, 2021
    Abstract

    Jurisprudential decisions always reflect confidence in the law. The more wrong a judge's decision is, the greater the reaction will be. This is something we all know. But today, the reactions to the decisions of the judges are increasing in a negative way. Because, making so many conscientious decisions or transferring cases to higher courts have widely increased. This means that people's objections to the decisions increase. To avoid such problems in judges' decisions, an algorithm is introduced in this article. The mentioned algorithm shows every decision given by judges as generalized set-valued neutrosophic quadruples and calculates its similarity to the ideal decision by Hamming similarity measure on generalized set-valued neutrosophic quadruples. The algorithm is introduced in such a way that it decides whether the decision to be made in each case is similar to the decision made by the judge or not. This allows us to see how correct the judges’ decisions are. The closer the algorithm result is to 1, the more accurate the decision. You can judge decisions according to this accuracy value and it is aimed to reduce the problems such as objections to the decisions.

    Keywords :

    generalized set valued neutrosophic quadruple numbers, generalized Hamming similarity measure, law, decision making

    References

    [1] Smarandache, F. (1998) “A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic” American Research Press: Rehoboth, DE, USA, 1998

    [2] F. Smarandache and M. Ali “Neutrosophic triplet group” Neural Computing and Applications, vol 29, pp. 595-601, (2016)

    [3] M. Ali, F. Smarandache, M. Khan “Study on the development of neutrosophic triplet ring and neutrosophic triplet field” Mathematics-MDPI, vol 6(4), pp. 46, 2018

    [4] Wang H., Smarandache F., Zhang Y. Q., Sunderraman R. “Single valued neutrosophic sets” Multispace Multistructure, 4, 410 – 413, 2020

    [5] Pramanik, B., Surapati, P., Bibhas Giri, C “A New Methodology for Neutrosophic Multiple Attribute Decisionmaking with Unknown Weight Information” Neutrosophic Sets and Systems, vol. 3, pp. 42-50, 2014

    [6] Şahin, M., & Kargın, A. “Neutrosophic triplet Lie Algebra” Neutrosophic Triplet Research, vol 1(6), pp. 68-78, 2019

    [7] Şahin M. and Kargın A. “Neutrosophic triplet partial inner product space” Neutrosophic Triplet Structures, vol 1, pp. 10-21, 2019

    [8] Rezaei, G. R., Jun, Y. B., & Borzooei, R. A. “Neutrosophic quadruple a-ideals” Neutrosophic Sets and Systems, vol 31(1), pp. 19, 2020

    [9] Şahin, M., Kargın, A., & Yücel, M. “Neutrosophic Triplet Partial g-Metric Spaces” Neutrosophic Sets and Systems, vol 33, pp. 116-133, 2020

    [10] Şahin, M., Kargın, A., & Uz, M. S. “Neutrosophic Triplet Partial Bipolar Metric Spaces” Neutrosophic Sets and Systems, vol 33, pp. 297-312, 2020

    [11] Şahin, M., Kargın, A., Uz, M. S., & Kılıç, A. “Neutrosophic Triplet Bipolar Metric Spaces” Quadruple Neutrosophic Theory And Applications, vol 1, pp. 150, 2020

    [12] Aslan, C., Kargın, A., & Şahin, M. “Neutrosophic modeling of Talcott Parsons’s action and decision-making applications for it” Symmetry, vol 12(7), pp. 1166, 2020

    [13] Şahin, M., & Kargın, A. “Neutrosophic Triplet v-Generalized Metric Space” Axioms, 7(3), 67, 2018

    [14] Tripathy, B. C., & Das, S., Pairwise “Neutrosophic b-Continuous Functionin Neutrosophic Bitopological Spaces” Neutrosophic Sets and Systems, vol 43, pp. 82-92, 2021

    [15] Kargın, A., Dayan A., Yıldız, İ., Kılıç, A.” Neutrosophic Triplet m-Banach   Space” Neutrosophic Set and Systems, vol. 38, pp. 383 – 398, 2020

    [16] Smarandache F.  “Neutrosophic quadruple numbers, refined neutrosophic quadruple numbers, absorbance law, and the multiplication of neutrosophic quadruple numbers” Neutrosophic Set and Systems, vol 10, pp. 96 -98, 2014

     [17] Şahin, M., & Kargın, A. “Single valued neutrosophic quadruple graphs” Asian Journal of Mathematics and Computer Research, pp. 243-250, 2019

    [18] Jun, Y. B., Song, S. Z., & Muhiuddin, G.  “BCI-implicative ideals of BCI-algebras using neutrosophic quadruple structure “Journal of Computational Analysis and Applications, pp. 742, 2021

    [19] Şahin, M., Kargın “A. Neutrosophic triplet groups based on set valued neutrosophic quadruple numbers” Neutrosophic Sets and Systems, vol 30, pp. 122 – 131, 2019

    [20] Kandasamy, V., Kandasamy, I., & Smarandache, F. “Neutrosophic Quadruple Algebraic Codes over Z2 and their properties” Neutrosophic Sets and Systems, vol. 33(1), pp. 12, 2020

    [22] Şahin, M., Kargın, A., & Kılıç, A. “Generalized set valued neutrosophic quadruple sets and numbers” Quadruple Neutrosophic Theory and Applications, vol. 1(2), pp. 23-40, 2020

    [23 Şahin, M., Kargın, A., & Yıldız, İ. “Neutrosophic Triplet Field and Neutrosophic Triplet Vector Space Based on Set Valued Neutrosophic Quadruple Number” Quadruple Neutrosophic Theory and Applications, vol 1, pp. 52, 2020.

     [24] Kargın, A., Dayan, A., & Şahin, N. M. “Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences” Neutrosophic Sets and Systems, vol 40(1), pp. 4, 2021

    [25] Şahin, S., Kargın, A., & Yücel, M. “Hausdorff Measures on Generalized Set Valued Neutrosophic Quadruple Numbers and Decision Making Applications for Adequacy of Online Education” Neutrosophic Sets and Systems, vol 40, pp. 86-116, 2021

     [26] Mohseni Takallo, M., & Jun, Y. B.  “Commutative neutrosophic quadruple ideals of neutrosophic quadruple BCK-algebras” Journal of Algebraic Hyperstructures and Logical Algebras, vol 1(1), pp. 95-105, 2020

    [27] Şahin, M., Kargın, A., & Kılıç, A. “Generalized neutrosophic quadruple sets and numbers” Quadruple Neutrosophic Theory and Applications, vol 1, pp. 11-22, 2020

     [28] Borzooei, R. A., Jun, Y. B., Takallo, M. M., & Ahn, S. S. “Positive implicative neutrosophic quadruple BCK-algebras and ideals” New Mathematics and Natural Computation (NMNC), vol 17(02), pp. 403-423, 2021

    [29] Ibrahim, M., Agboola, A., Adeleke, E., & Akinleye, S.  “On Neutrosophic Quadruple Hypervector Spaces” International Journal of Neutrosophic Science (IJNS), vol 4, pp. 20-35, 2020

    Cite This Article As :
    Merve, Necmiye. , Dayan, Azize. Multicriteria Decision-Making Applications Based on Generalized Hamming Measure for Law. International Journal of Neutrosophic Science, vol. , no. , 2021, pp. 08- 29. DOI: https://doi.org/10.54216/IJNS.170101
    Merve, N. Dayan, A. (2021). Multicriteria Decision-Making Applications Based on Generalized Hamming Measure for Law. International Journal of Neutrosophic Science, (), 08- 29. DOI: https://doi.org/10.54216/IJNS.170101
    Merve, Necmiye. Dayan, Azize. Multicriteria Decision-Making Applications Based on Generalized Hamming Measure for Law. International Journal of Neutrosophic Science , no. (2021): 08- 29. DOI: https://doi.org/10.54216/IJNS.170101
    Merve, N. , Dayan, A. (2021) . Multicriteria Decision-Making Applications Based on Generalized Hamming Measure for Law. International Journal of Neutrosophic Science , () , 08- 29 . DOI: https://doi.org/10.54216/IJNS.170101
    Merve N. , Dayan A. [2021]. Multicriteria Decision-Making Applications Based on Generalized Hamming Measure for Law. International Journal of Neutrosophic Science. (): 08- 29. DOI: https://doi.org/10.54216/IJNS.170101
    Merve, N. Dayan, A. "Multicriteria Decision-Making Applications Based on Generalized Hamming Measure for Law," International Journal of Neutrosophic Science, vol. , no. , pp. 08- 29, 2021. DOI: https://doi.org/10.54216/IJNS.170101