International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 26 , Issue 4 , PP: 226-253, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Neutrosophic Z-Number Framework for Intelligent Multi-Objective Solid Transportation Systems

Muhammad Kamran 1 * , Anns Uzair 2 , Muhammad Tahir 3 * , Muhammad Farman 4 * , Ixtiyarov Farxod 5 , Mohamed Hafez 6

  • 1 Research Institute of Business Analytics and SCM, College of Management, Shenzhen University, China; Center for Reseaech and Innovation, Asia International University, Yangibod MFY, G’ijduvon street, House 74, Bukhara, Uzbekistan; Faculty of Engineering and Quantity Surviving, INTI International University Colleges, Nilai, Malaysia - (kamrankfueit@gmail.com)
  • 2 Department of Mathematics, Govt College University Faisalabad, Pakistan - (UzairAnns@gmail.com)
  • 3 Department of Mathematics, Institute of Numerical Sciences, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan - (TahirdMuhamma@gmail.com)
  • 4 Faculty of Arts and Sciences, Department of Mathematics, Near East University, Nicosia, 99010, Turkey; Jadara University Research Center, Jadara University, Irbid, Jordan; Research Center of Applied Mathematics, Khazar University, Baku, Azerbaijan - (FarmanMuhammad@gmail.com)
  • 5 Center for Reseaech and Innovation, Asia International University, Yangibod MFY, G’ijduvon street, House 74, Bukhara, Uzbekistan - (FarxodIxtiyarov@gmail.com)
  • 6 Faculty of Engineering and Quantity Surviving, INTI International University Colleges, Nilai, Malaysia; Faculty of Mangement, Shinawatra, Pathum Thani, Thailand - (HafezMohamed@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.260421

    Received: January 10, 2025 Revised: March 01, 2025 Accepted: June 06, 2025
    Abstract

    Transportation optimization remains a critical challenge in international businesses, particularly given the inherent uncertainties of supply chain networks. This paper proposes a novel machine learning-based model for solving multi-objective, multi-item solid transportation problems that fundamentally advances beyond existing fuzzy and neutrosophic approaches. Our key innovation lies in the synergistic integration of neutrosophic Z-numbers (NZNs) with adaptive machine learning techniques, creating a framework that simultaneously captures value vagueness, information reliability, and dynamic uncertainty patterns capabilities absent in conventional fuzzy transportation models. Unlike traditional fuzzy methods that treat all uncertainty uniformly, our NZN representation provides a three-dimensional structure incorporating truth, indeterminacy, and falsity measures, each with associated reliability metrics. This enriched uncertainty modeling enables three ground breaking advancements over existing approaches: (1) a neural scoring system that autonomously learns optimal NZN comparison functions from historical decision patterns, overcoming the limitations of static aggregation operators in fuzzy systems; (2) LSTM networks that jointly forecast demand values and their reliability evolution under uncertainty; and (3) reinforcement learning optimizers that dynamically balance economic efficiency with information quality in routing decisions. Computational experiments demonstrate superior performance compared to six established baseline methods, including traditional fuzzy, intuitionistic fuzzy, neutrosophic, and pure machine learning approaches. Our hybrid framework achieves a 23.4% reduction in transportation costs and 35.4% improvement in uncertainty handling compared to conventional fuzzy transportation models, with statistically significant improvements (p < 0.001) across all evaluation metrics. By coupling the theoretical rigor of neutrosophic mathematics with the adaptive power of machine learning, this study provides businesses with a transformative decision-support system for transportation planning under real-world uncertainty conditions.

    Keywords :

    Machine Learning , Neutrosophic Z-Numbers , Supply Chain Optimization , Cost Optimization , Sustainability

    References

    [1] K. M. Almatar, Smart transportation planning and its challenges in the kingdom of saudi arabia, Sustain- able Futures 8 (2024) 100238.

     

    [2] S. M. Harle, Advancements and challenges in the application of artificial intelligence in civil engineering: a comprehensive review, Asian Journal of Civil Engineering 25 (1) (2024) 1061–1078.

     

    [3] H. Lyu, Y. Guo, P. Liu, T. Wang, Uncertainty-aware dynamics modeling and data-driven robust predictive control for mixed vehicle platoon, IEEE Internet of Things Journal (2025).

     

    [4] L. A. Zadeh, Fuzzy sets, Information and Control (1965).

     

    [5] M. Kamran, S. Ashraf, M. E. Abdulla, S. Fatima, Advancing mathematical frontiers: A comprehensive study of the foundations of fermatean fuzzy soft linear spaces and its applications in supply chain management, Information Sciences (2025) 122506.

     

    [6] K. T. Atanassov, Intuitionistic fuzzy sets, Springer, 1999.

     

    [7] F. Smarandache, Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & synthetic analysis (1998).

     

    [8] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single valued neutrosophic sets, Infinite study, 2010.

     

    [9] P. Malack`y, R. Madleˇn´ak, Transportation problems and their solutions: literature review, Transportation Research Procedia 74 (2023) 323–329.

     

    [10] M. Bisht, A. Ebrahimnejad, Four-dimensional green transportation problem considering multiple objec- tives and product blending in fermatean fuzzy environment, Complex & Intelligent Systems 11 (6) (2025) 1–29.

     

    [11] L. A. Zadeh, A note on z-numbers, Information sciences 181 (14) (2011) 2923–2932.

     

    [12] M. Kamran, S. Ashraf, M. S. Hameed, A promising approach with confidence level aggregation operators based on single-valued neutrosophic rough sets, Soft Computing (2023) 1–24.

     

    [13] G. Chen, J. wan Zhang, Intelligent transportation systems: Machine learning approaches for urban mo- bility in smart cities, Sustainable Cities and Society 107 (2024) 105369.

     

    [14] D. Sun, A. Jamshidnejad, B. De Schutter, A novel framework combining mpc and deep reinforcement learning with application to freeway traffic control, IEEE Transactions on Intelligent Transportation Sys- tems 25 (7) (2024) 6756–6769.

     

    [15] I. Durlik, T. Miller, E. Kostecka, P. Kozlovska, W. Slkaczka, Enhancing safety in autonomous maritime transportation systems with real-time ai agents, Applied Sciences 15 (9) (2025) 4986.

     

    [16] M. Bagheri, A. Ebrahimnejad, S. Razavyan, F. Hosseinzadeh Lotfi, N. Malekmohammadi, Fuzzy arith- metic dea approach for fuzzy multi-objective transportation problem, Operational Research (2022) 1–31.

     

    [17] M. Kamran, M. Nadeem, J. ˙Zywiołek, M. E. M. Abdalla, A. Uzair, A. Ishtiaq, Enhancing transportation efficiency with interval-valued fermatean neutrosophic numbers: a multi-item optimization approach, Symmetry 16 (6) (2024) 766.

     

    [18] I. Abdulrashid, W.-C. Chiang, J.-B. Sheu, S. Mammadov, An interpretable machine learning framework for enhancing road transportation safety, Transportation Research Part E: Logistics and Transportation Review 195 (2025) 103969.

     

    [19] A. H. Bagdadee, I. Al Mamoon, D. A. Dewi, V. Varadarajan, L. Zhang, A. U. Mondal, Advancing sus- tainability in urban transportation: A solar-powered metro rail system, PloS one 20 (3) (2025) e0320016.

     

    [20] S. Hamrioui, P. Lorenz, J. Lloret, J. J. C. Rodrigues, Cost-effective strategy for iiot security based on bi-objective optimization, IEEE Internet of Things Journal (2025).

     

    [21] G. Borah, P. Dutta, Aggregation operators of quadripartitioned single-valued neutrosophic z-numbers with applications to diverse covid-19 scenarios, Engineering Applications of Artificial Intelligence 119 (2023) 105748.

     

    [22] M. Karabacak, Correlation coefficient for neutrosophic z-numbers and its applications in decision mak- ing, Journal of Intelligent & Fuzzy Systems 45 (1) (2023) 215–228.

     

    [23] S. Ghosh, S. K. Roy, A. Ebrahimnejad, J. L. Verdegay, Multi-objective fully intuitionistic fuzzy fixed- charge solid transportation problem, Complex & Intelligent Systems 7 (2021) 1009–1023.

     

    [24] D. Gurukumaresan, C. Duraisamy, R. Srinivasan, Optimal solution of fuzzy transportation problem using octagonal fuzzy numbers., Computer Systems Science & Engineering 37 (3) (2021).

     

    [25] J. Ye, S. Du, R. Yong, Aczel–alsina weighted aggregation operators of neutrosophic z-numbers and their multiple attribute decision-making method, International Journal of Fuzzy Systems 24 (5) (2022) 2397– 2410.

     

    [26] K. Tsolaki, T. Vafeiadis, A. Nizamis, D. Ioannidis, D. Tzovaras, Utilizing machine learning on freight transportation and logistics applications: A review, ICT Express 9 (3) (2023) 284–295.

    Cite This Article As :
    Kamran, Muhammad. , Uzair, Anns. , Tahir, Muhammad. , Farman, Muhammad. , Farxod, Ixtiyarov. , Hafez, Mohamed. Neutrosophic Z-Number Framework for Intelligent Multi-Objective Solid Transportation Systems. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 226-253. DOI: https://doi.org/10.54216/IJNS.260421
    Kamran, M. Uzair, A. Tahir, M. Farman, M. Farxod, I. Hafez, M. (2025). Neutrosophic Z-Number Framework for Intelligent Multi-Objective Solid Transportation Systems. International Journal of Neutrosophic Science, (), 226-253. DOI: https://doi.org/10.54216/IJNS.260421
    Kamran, Muhammad. Uzair, Anns. Tahir, Muhammad. Farman, Muhammad. Farxod, Ixtiyarov. Hafez, Mohamed. Neutrosophic Z-Number Framework for Intelligent Multi-Objective Solid Transportation Systems. International Journal of Neutrosophic Science , no. (2025): 226-253. DOI: https://doi.org/10.54216/IJNS.260421
    Kamran, M. , Uzair, A. , Tahir, M. , Farman, M. , Farxod, I. , Hafez, M. (2025) . Neutrosophic Z-Number Framework for Intelligent Multi-Objective Solid Transportation Systems. International Journal of Neutrosophic Science , () , 226-253 . DOI: https://doi.org/10.54216/IJNS.260421
    Kamran M. , Uzair A. , Tahir M. , Farman M. , Farxod I. , Hafez M. [2025]. Neutrosophic Z-Number Framework for Intelligent Multi-Objective Solid Transportation Systems. International Journal of Neutrosophic Science. (): 226-253. DOI: https://doi.org/10.54216/IJNS.260421
    Kamran, M. Uzair, A. Tahir, M. Farman, M. Farxod, I. Hafez, M. "Neutrosophic Z-Number Framework for Intelligent Multi-Objective Solid Transportation Systems," International Journal of Neutrosophic Science, vol. , no. , pp. 226-253, 2025. DOI: https://doi.org/10.54216/IJNS.260421