International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 27 , Issue 2 , PP: 373-391, 2026 | Cite this article as | XML | Html | PDF | Full Length Article

Enforcement of q-Rung Orthopair Fuzzy Subsets to Q-Ideals

Mohammad Hamidi 1 * , Sirous Jahanpanah 2 , Florentin Smarandache 3

  • 1 Department of Mathematics, Payame Noor University (PNU), P. O. Box 19395-4697, Tehran, Iran - (m.hamidi@pnu.ac.ir)
  • 2 Department of Mathematics, Payame Noor University (PNU), P. O. Box 19395-4697, Tehran, Iran - (s.jahanpanah@pnu.ac.ir)
  • 3 Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA - (smarand@unm.edu)
  • Doi: https://doi.org/10.54216/IJNS.270231

    Received: April 04, 2025 Revised: June 10, 2025 Accepted: August 18, 2025
    Abstract

    This paper presents an innovative generalization of intuitionistic fuzzy Q-subalgebras (IF-Q-S) by incorporating the structure of q-Rung Orthopair fuzzy sets (q-ROFS), which are distinguished by their independen membership and non-membership functions. It inserts and investigates q-Rung Orthopair fuzzy Q-subalgebras (q-ROFQ-S), demonstrating that this model is equivalent to a combination of a fuzzy Q-subalgebra (F-Q-S) and an anti-fuzzy Q-subalgebra (AF-Q-S). The study’s notable contributions include the definition of the nil radical and an exploration of its properties under homomorphisms. Additionally, it establishes that the union of q-ROFQ-subalgebras can itself form such a subalgebra under particular commutative conditions. Expanding the concept to the realm of ideals, the paper defines q-Rung Orthopair fuzzy Q-ideals (q-ROFQ-I) and proves that every q-regular q-ROFQ-S is inherently a q-ROFQ-I. This work offers a robust and versatile algebraic framework for addressing approximation in complex nonlinear systems.

    Keywords :

    Q-algebra , q-Rung Orthopair fuzzy set , q-Rung Orthopair fuzzy Q-algebra , q-Rung Orthopair fuzzy Q-ideal

    References

    [1] K. T. Atanassov, “Intuitionistic fuzzy sets”, Fuzzy Sets and Systems, vol. 20, no.1, pp. 87–96, 1986.

     

    [2] K. Iseki, “On BCI-algebras”, Mathematics Seminar Notes(Kobe University), vol. 8, no. 1, pp. 125–130, 1980. MR 81k:06018a. Zbl 0434.03049.

     

    [3] J. N. Mordeson, D. S. Malik, “Fuzzy Commutative Algebra”, World Scientific Publishing Co. Pte. Ltd., 1998.

     

    [4] J. Neggres, S. S. Ahn, and H. S. Kim, “On Q-Algebras”, IJMMS, vol. 27, no. 12, pp. 749-757, 2001.

     

    [5] R. R. Yager, “Generalized Orthopair fuzzy sets”, IEEE Transactions on Fuzzy Systems, vol. 25,no. 5, 2017, 1222-1230.

     

    [6] L. A. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, no. 3, pp. 338–353, 1965.

    Cite This Article As :
    Hamidi, Mohammad. , Jahanpanah, Sirous. , Smarandache, Florentin. Enforcement of q-Rung Orthopair Fuzzy Subsets to Q-Ideals. International Journal of Neutrosophic Science, vol. , no. , 2026, pp. 373-391. DOI: https://doi.org/10.54216/IJNS.270231
    Hamidi, M. Jahanpanah, S. Smarandache, F. (2026). Enforcement of q-Rung Orthopair Fuzzy Subsets to Q-Ideals. International Journal of Neutrosophic Science, (), 373-391. DOI: https://doi.org/10.54216/IJNS.270231
    Hamidi, Mohammad. Jahanpanah, Sirous. Smarandache, Florentin. Enforcement of q-Rung Orthopair Fuzzy Subsets to Q-Ideals. International Journal of Neutrosophic Science , no. (2026): 373-391. DOI: https://doi.org/10.54216/IJNS.270231
    Hamidi, M. , Jahanpanah, S. , Smarandache, F. (2026) . Enforcement of q-Rung Orthopair Fuzzy Subsets to Q-Ideals. International Journal of Neutrosophic Science , () , 373-391 . DOI: https://doi.org/10.54216/IJNS.270231
    Hamidi M. , Jahanpanah S. , Smarandache F. [2026]. Enforcement of q-Rung Orthopair Fuzzy Subsets to Q-Ideals. International Journal of Neutrosophic Science. (): 373-391. DOI: https://doi.org/10.54216/IJNS.270231
    Hamidi, M. Jahanpanah, S. Smarandache, F. "Enforcement of q-Rung Orthopair Fuzzy Subsets to Q-Ideals," International Journal of Neutrosophic Science, vol. , no. , pp. 373-391, 2026. DOI: https://doi.org/10.54216/IJNS.270231