Volume 27 , Issue 2 , PP: 373-391, 2026 | Cite this article as | XML | Html | PDF | Full Length Article
Mohammad Hamidi 1 * , Sirous Jahanpanah 2 , Florentin Smarandache 3
Doi: https://doi.org/10.54216/IJNS.270231
This paper presents an innovative generalization of intuitionistic fuzzy Q-subalgebras (IF-Q-S) by incorporating the structure of q-Rung Orthopair fuzzy sets (q-ROFS), which are distinguished by their independen membership and non-membership functions. It inserts and investigates q-Rung Orthopair fuzzy Q-subalgebras (q-ROFQ-S), demonstrating that this model is equivalent to a combination of a fuzzy Q-subalgebra (F-Q-S) and an anti-fuzzy Q-subalgebra (AF-Q-S). The study’s notable contributions include the definition of the nil radical and an exploration of its properties under homomorphisms. Additionally, it establishes that the union of q-ROFQ-subalgebras can itself form such a subalgebra under particular commutative conditions. Expanding the concept to the realm of ideals, the paper defines q-Rung Orthopair fuzzy Q-ideals (q-ROFQ-I) and proves that every q-regular q-ROFQ-S is inherently a q-ROFQ-I. This work offers a robust and versatile algebraic framework for addressing approximation in complex nonlinear systems.
Q-algebra , q-Rung Orthopair fuzzy set , q-Rung Orthopair fuzzy Q-algebra , q-Rung Orthopair fuzzy Q-ideal
[1] K. T. Atanassov, “Intuitionistic fuzzy sets”, Fuzzy Sets and Systems, vol. 20, no.1, pp. 87–96, 1986.
[2] K. Iseki, “On BCI-algebras”, Mathematics Seminar Notes(Kobe University), vol. 8, no. 1, pp. 125–130, 1980. MR 81k:06018a. Zbl 0434.03049.
[3] J. N. Mordeson, D. S. Malik, “Fuzzy Commutative Algebra”, World Scientific Publishing Co. Pte. Ltd., 1998.
[4] J. Neggres, S. S. Ahn, and H. S. Kim, “On Q-Algebras”, IJMMS, vol. 27, no. 12, pp. 749-757, 2001.
[5] R. R. Yager, “Generalized Orthopair fuzzy sets”, IEEE Transactions on Fuzzy Systems, vol. 25,no. 5, 2017, 1222-1230.
[6] L. A. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, no. 3, pp. 338–353, 1965.