International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 26 , Issue 4 , PP: 167-173, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

The Degree of Best Approximation of Functions via Some Linear Operators

Humam A. Abdulrazzaq 1 , Raad Falh Hasan 2 , Abed S. A. 3 , Faisal Al-Sharqi 4 *

  • 1 Department of Mathematics, Faculty of Education for Pure Sciences, University of Anbar, Ramadi, Anbar, Iraq - (ahhumam1@uoanbar.edu.iq)
  • 2 Ministry of Education, General Directorate of Education, Baghdad, Third Rusafa, Iraq - (Raadfhassanabod@gmail.com)
  • 3 College of Administration and Economics, Diyala University, Iraq - (samiaabed@uodiyala.edu.iq)
  • 4 Department of Mathematics, Faculty of Education for Pure Sciences, University of Anbar, Ramadi, Anbar, Iraq - (faisal.ghazi@uoanbar.edu.iq)
  • Doi: https://doi.org/10.54216/IJNS.260416

    Received: March 06, 2025 Revised: May 08, 2025 Accepted: June 09, 2025
    Abstract

    The concentration of linear operators is unpretentious to prove in measurable space   but there is few works in weighted space, here we will include characteristics of approximate of unrestrained functions in measured space by lined operators via direct and converse approximation theorems. In addition, the relationship between modulus of softness and K- functional where, we proven are together tools equivalence.

    Keywords :

    Approximation of functions , Linear operators , Weighted space , Modulus of smoothness , K-functional

    References

    [1]       B. Muckenhoupt, "Weighted norm inequalities for the Hardy maximal function," Trans. Amer. Math. Soc., vol. 165, pp. 207–226, 1972.

    [2]       D. M. Israfilov and A. Guven, "Approximation by trigonometric polynomials in weighted Orlicz spaces," Studia Math., vol. 174, pp. 147–168, 2006.

    [3]       M. C. De Bonis, G. Mastroianni, and M. G. Russo, "Polynomial approximation with special doubling weights," Acta Sci. Math. (Szeged), vol. 69, pp. 159–184, 2003.

    [4]       A. A. Auad and A. H. Klaeif, "Best co-proximal and Co-chebyshev of unbounded functions," J. Phys.: Conf. Ser., vol. 2322, no. 1, art. 012033, 2022.

    [5]       Ahmet T., "Approximation theorems in weighted Lebesgue spaces with variable exponent," Filomat, vol. 35, no. 2, pp. 561–577, 2021.

    [6]       J. N. Ismail, Z. Rodzi, H. Hashim, N. H. Sulaiman, A. Al-Quran, and A. G. Ahmad, "Enhancing decision accuracy in DEMATEL using Bonferroni mean aggregation under Pythagorean neutrosophic environment," J. Fuzzy Extens. Appl., vol. 4, no. 4, pp. 281–298, 2023.

    [7]       Z. Ditzian, "A modulus of smoothness on the unit sphere," J. Anal. Math., vol. 79, pp. 189–200, 1999.

    [8]       A. M. Bikchentaev and S. A. Abed, "Paranormal elements in normed algebra," Russian Math., vol. 62, pp. 10–15, 2018.

    [9]       Y. Al-Qudah, A. Jaradat, S. K. Sharma, and V. K. Bhat, "Mathematical analysis of the structure of one-heptagonal carbon nanocone in terms of its basis and dimension," Physica Scripta, vol. 99, no. 5, art. 055252, 2024.

    [10]    M. U. Romdhini and A. Nawawi, "On the spectral radius and sombor energy of the non-commuting graph for dihedral groups," Malaysian J. Fundam. Appl. Sci., vol. 20, no. 1, pp. 65–73, 2024.

    [11]    A. Bataihah and A. Hazaymeh, "Quasi contractions and fixed point theorems in the context of neutrosophic fuzzy metric spaces," Eur. J. Pure Appl. Math., vol. 18, no. 1, pp. 5785–5785, 2025.

    Cite This Article As :
    A., Humam. , Falh, Raad. , S., Abed. , Al-Sharqi, Faisal. The Degree of Best Approximation of Functions via Some Linear Operators. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 167-173. DOI: https://doi.org/10.54216/IJNS.260416
    A., H. Falh, R. S., A. Al-Sharqi, F. (2025). The Degree of Best Approximation of Functions via Some Linear Operators. International Journal of Neutrosophic Science, (), 167-173. DOI: https://doi.org/10.54216/IJNS.260416
    A., Humam. Falh, Raad. S., Abed. Al-Sharqi, Faisal. The Degree of Best Approximation of Functions via Some Linear Operators. International Journal of Neutrosophic Science , no. (2025): 167-173. DOI: https://doi.org/10.54216/IJNS.260416
    A., H. , Falh, R. , S., A. , Al-Sharqi, F. (2025) . The Degree of Best Approximation of Functions via Some Linear Operators. International Journal of Neutrosophic Science , () , 167-173 . DOI: https://doi.org/10.54216/IJNS.260416
    A. H. , Falh R. , S. A. , Al-Sharqi F. [2025]. The Degree of Best Approximation of Functions via Some Linear Operators. International Journal of Neutrosophic Science. (): 167-173. DOI: https://doi.org/10.54216/IJNS.260416
    A., H. Falh, R. S., A. Al-Sharqi, F. "The Degree of Best Approximation of Functions via Some Linear Operators," International Journal of Neutrosophic Science, vol. , no. , pp. 167-173, 2025. DOI: https://doi.org/10.54216/IJNS.260416