Volume 26 , Issue 4 , PP: 155-166, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Salam Alnabulsi 1 , Wael Mahmoud Mohammad Salameh 2 , Issam Bendib 3 * , Ahmad A. Abubaker 4 , Adel Ouannas 5 , Abdallah Al-Husban 6
Doi: https://doi.org/10.54216/IJNS.260415
This study investigates the finite-time stability (FTS) of the discrete Sel’kov-Schnakenberg reaction-diffusion (SSRD) system, a mathematical model capturing the interplay between local reactions and spatial diffusion. A novel discretization framework based on finite difference methods (FDM) is developed to transform the continuous reaction-diffusion (RD) system into a discrete counterpart, enabling detailed computational analysis. Sufficient conditions for FTS are derived using Lyapunov functions (LF) and eigenvalue-based methods, ensuring precise predictions of the system’s behavior. Numerical simulations validate theoretical findings, demonstrating the proposed methods’ practical applicability to scenarios such as chemical reactions, biological processes, and technological systems. The influence of system parameters, boundary conditions, and initial conditions on the dynamic behavior is systematically analyzed. This study contributes to the broader understanding of RD systems, addressing key challenges in stability analysis and offering a computationally efficient framework with implications for science and engineering.
Finite-time stabilit , Reaction-diffusion systems , Sel&rsquo , kov-Schnakenberg model , Finite difference methods , Lyapunov functions
[1] M. Seslija, A. V. Schaft, J. M. Scherpen, Reaction–Diffusion Systems in the Port–Hamiltonian Frame- work, IFAC Proceedings Volumes, vol. 43, pp. 837–842, 2010.
[2] F. Liu, M. A. Bl¨atke, M. Heiner, M. Yang, Modelling and simulating reaction–diffusion systems using colored Petri nets, Computers in Biology and Medicine, vol. 53, pp. 297–308, 2014.
[3] S. A. Isaacson, J. Ma, K. V. Spiliopoulos, How Reaction–Diffusion PDEs Approximate the Large-Population Limit of Stochastic Particle Models, SIAM Journal on Applied Mathematics, vol. 81, pp. 26222657- ,2020
[4] A. A. Keller, Reaction–diffusion systems in natural sciences and new technology transfer, Proceedings of the Royal Society of Edinburgh, Section A, vol. 130, pp. 507–516, 2012.
[5] F. A. Davidson, B. P. Rynne, A priori bounds and global existence of solutions of the steady–state Sel’kov model, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, vol. 130, pp. 507–516, 2000.
[6] F. A. Khan, A. Ali, N. N. Hamadneh, A. Abdullah, M. N. Alam, Numerical Investigation of Chemical Schnakenberg Mathematical Model, Journal of Nanomaterials, vol. 2021, Article 9152972, 2021.
[7]Y. Zhao, M. S. Iqbal, M. Z. Baber, Inc M., M. O. Ahmed, H. Khurshid, On traveling wave solutions of an autocatalytic reaction–diffusion Selkov–Schnakenberg system, Results in Physics, 2023.
[8] K. A. Noufaey, T. R. Marchant, M. P. Edwards, A semi-analytical analysis of the stability of the reversible Sel’kov model, Mathematical Models and Analysis, vol. 20, pp. 49–63, 2015.
[9] J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour, Journal of Theoretical Biology, vol. 81, no. 3, pp. 389–400, 1979.
[10] J. Hofbauer, P. Schuster, Dynamics of Linear and Nonlinear Autocatalysis and Competition, Springer, Berlin / Heidelberg, 1984.
[11] P. Gray, Review Lecture – Instabilities and oscillations in chemical reactions in closed and open systems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 415, pp.1-34, 1988.
[12] Y. You, Upper–Semicontinuity of Global Attractors for Reversible Schnakenberg Equations, Studies in Applied Mathematics, vol. 130, pp. 451–472, 2013.
[13] B. Li, X. Zhang, Steady states of a Sel’kov–Schnakenberg reaction–diffusion system, Discrete and Continuous Dynamical Systems – Series S, vol. 10, pp. 1009–1023, 2017.
[14] M. Gentile, I. Torcicollo, Nonlinear stability analysis of a chemical reaction–diffusion system, Ricerche di Matematica, pp. 1–12, 2023.
[15] A. K. Dutt, Amplitude equation for a diffusion–reaction system: The reversible Sel’kov model, AIP Advances, vol. 2, Article 042125, 2012.
[16] K. S. Al Noufaey, Stability analysis for Sel’kov–Schnakenberg reaction–diffusion system, Open Mathematics, vol. 19, pp. 46–62, 2021.
[17] Y. Li, Y. Zhou, Turing–Hopf bifurcation in a general Sel’kov–Schnakenberg reaction–diffusion system, Chaos, Solitons & Fractals, 2023.
[18] I. M. Batiha, I. Bendib, A. Ouannas, I. H. Jebril, S. Alkhazaleh, S. Momani, On New Results of Stability and Synchronization in Finite-Time for FitzHugh–Nagumo Model Using Gronwall Inequality and Lyapunov Function, Journal of Robotic Control, vol. 5, p. 6, 2024.
[19] K. Wu, H. Sun, P. Shi, C. Lim, Finite-time boundary stabilization of reaction-diffusion systems, International Journal of Robust and Nonlinear Control, vol. 28, pp. 1641–1652, 2018.
[20] J. R. Weimar, J. P. Boon, Class of cellular automata for reaction-diffusion systems, Physical Review E, vol. 49, no. 2, pp. 1749–1752, 1993.
[21] O. E. Hepson, I. Dag, Finite Element Method for Schnakenberg Model, in Nonlinear Systems and Complexity, Springer, 2018.
[22] Y. Wang, X. Bai, An Efficient Linearized Difference Algorithm for a Diffusive Sel’kov–Schnakenberg System, Mathematics, vol. 12, Article 60894, 2024.
[23] M. El-Hachem, S. W. McCue, W. Jin, Y. Du, M. J. Simpson, The spreading-extinction dichotomy interpretation, 2019.
[24] G. Chavent, Approximation des ´equations aux d´eriv´ees partielles, Math´ematiques, 1993.
[25] O. A. Almatroud, A. Ouannas, Finite-Time Stability Analysis of a Discrete-Time Generalized Reaction-Diffusion System, Mathematics, vol. 12, p. 3679, 2024.
[26] W. M. Haddad, J. Lee, Finite-time stability of discrete autonomous systems, Automatica, vol. 122, p, 109282, 2020
[27] A. Ouannas, I. M. Batiha, S. Bekiros, J. Liu, H. Jahanshahi, A. A. Aly, A. H. Alghtani, Synchronization of the Glycolysis Reaction–Diffusion Model via Linear Control Law, Entropy, vol. 23, p. 1516, 2020.