International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 4 , PP: 147-155, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Epanechnikov-pareto Distribution with Application

Naser Odat 1

  • 1 Department of Mathematics, Faculty of Science, Jadara University, Irbid, Jordan - (nodat@jadara.edu.jo)
  • Doi: https://doi.org/10.54216/IJNS.250412

    Received: June 25, 2024 Revised: October 13, 2024 Accepted: December 22, 2024
    Abstract

    In this article, we combined the Epanechnikov kernel function with the pareto distribution to produce the Epanechnikov-Pareto distribution (EPD). Some properties of this distribution are studied, like the moments, MLEs, reliability analysis functions, ordered statistics, and quintile function.

    Keywords :

    Epanechnikov Pareto distribution , Epanechnikov distribution , Moments , Entropy , Order statistics , quintile function

    References

    [1] W. M. Abbas, M. Mostafa, and H. A. M. A. Galleria, "Method for nonlinear higher-order boundary value problems based on Chebyshev polynomials," J. Phys.: Conf. Ser., vol. 2128, no. 1, art. no. 012035, 2021.

    [2] W. Al-Hayani, "Adomian decomposition method with Green's function for solving twelfth-order boundary value problems," Appl. Math. Sci., vol. 9, no. 8, pp. 353–368, 2015.

    [3] M. M. Rashid and Z. Mahmoud, "Advanced numerical techniques for twelfth-order boundary value problems using spectral methods," Math. Compute. Simul, vol. 192, pp. 271–283, 2022.

    [4] S. P. Singh and R. Sharma, "Wavelet collocation method for solving higher-order boundary value problems," Adv. Math. Comput. Appl., vol. 10, pp. 1–17, 2021.

    [5] K. I. A. Falade, "Numerical approach for solving high-order boundary value problems," Int. J. Math. Sci. Comput., vol. 3, pp. 1–16, 2019.

    [6] M. F. Al-Hadidi, "Refined neutrosophic mathematical models in real analysis," Neutrosophic Sets Syst., vol. 53, pp. 1–11, 2023.

    [7] M. Iftikhar, H. U. Rehman, and M. Younis, "Solution of thirteenth-order boundary value problems by differential transformation method," Asian J. Math. Appl., vol. 2014, pp. 1–11, 2014.

    [8] N. Islam, "Bezier polynomials and its applications with the tenth and twelfth-order boundary value problems," J. Inf. Comput. Sci., vol. 15, no. 1, pp. 52–66, 2020.

    [9] A. E. Zakaria and M. Ismail, "Cubic spline approximation for solving fourteenth-order boundary value problems," Egypt. Math. Soc., vol. 28, no. 1, pp. 29–39, 2022.

    [10] R. Kumar and A. Sharma, "Cubic B-spline method for solving boundary value problems under neutrosophic conditions," Neutrosophic Comput., vol. 7, pp. 45–59, 2022.

    [11] A. F. Salamah and R. M. Dallah, "A study of neutrosophic Bernoulli and Riccati equations using the one-dimensional geometric AH-Isometry," J. Neutrosophic Fuzzy Syst., vol. 5, no. 1, pp. 30–40, 2023.

    [12] A. S. V. R. Kanth and Y. N. Reddy, "Higher-order finite difference method for a class of singular boundary value problems," Appl. Math. Compute, vol. 155, pp. 249–258, 2004.

    [13] M. F. El-Basyouni, H. A. Ghaly, and M. A. Darwish, "Security systems using cyclic algebraic structures," J. Cybersecurity Res., vol. 45, no. 3, pp. 198–215, 2023.

    [14] M. Akhter and R. Farooq, "Applications of neutrosophic sets in fuzzy algebras and decision making," Neutrosophic Sets Syst., vol. 66, pp. 139–156, 2023.

    [15] L. Baradhi and R. Farhan, "A robust numerical method for solving high-order boundary value problems via hybrid higher-order spline collocation," Bound. Value Probl., vol. 2023, art. no. 3, 2023. DOI: 10.1186/s13661-023-01769-5.

    [16] A. E. Z. Ezzat, H. Mohamed, and R. Z. Ali, "Numerical methods for singular boundary value problems using operational calculus," J. Math. Anal. Appl., vol. 508, no. 1, pp. 123-134, 2022. DOI: 10.1016/j.jmaa.2021.125056.

    [17] N. Aslam and M. Khan, "Neutrosophic fuzzy vector spaces in higher mathematics," Neutrosophic Comput., vol. 6, no. 2, pp. 49–65, 2022.

    [18] R. Amin and J. K. Lee, "Commutative linear operators in multidimensional models," Korean J. Math., vol. 30, no. 2, pp. 123–145, 2023.

    [19] M. Karak et al., "A solution technique of transportation problem in neutrosophic environment," Neutrosophic Syst. Appl., vol. 3, pp. 17–34, 2023. DOI: 10.61356/j.nswa.2023.5.

    [20] V. A. Zolotarev, "Triangular models of commutative systems of linear operators," Ukr. Math. J., vol. 68, no. 5, pp. 791–811, 2016. DOI: 10.1007/s11253-016-1258-6.

    [21] A. S. Heilat, B. Batiha, T. Qawasmeh, and R. Hatamleh, "Hybrid cubic B-spline method for solving a class of singular boundary value problems," Eur. J. Pure Appl. Math., vol. 16, no. 2, pp. 751–762, 2023. DOI: 10.29020/nybg.ejpam.v16i2.4725.

    [22] A. S. Heilat and F. Ahmad, "Numerical radius inequalities using refined algorithms," J. Pure Appl. Math., vol. 19, no. 2, pp. 65–78, 2023.

    [23] B. Batiha et al., "Solving multispecies Lotka–Volterra equations by the Daftardar-Gejji and Jafari method," Int. J. Math. Math. Sci., vol. 2022, art. no. 1839796, pp. 1–7, 2022. DOI: 10.1155/2022/1839796.

    [24] S. Singh and S. Sharma, "Divergence measures and aggregation operators for single-valued neutrosophic sets with applications in decision-making problems," Neutrosophic Syst. Appl., vol. 20, pp. 27–44, 2024. DOI: 10.61356/j.nswa.2024.20281.

    [25] H. Sankari and M. Abobala, "Neutrosophic linear Diophantine equations with two variables," Neutrosophic Sets Syst., vol. 38, pp. 22–30, 2020.

    [26] A. Hazaymeh, A. Qazza, and H. R. Saadeh, "Further refinements of numerical radius inequalities," Open Math., vol. 21, no. 2, pp. 101–115, 2023.

    [27] F. Al-Ani, T. Qawasmeh, and S. Khalid, "Spline methods for higher-order boundary value problems," Eur. J. Pure Appl. Math., vol. 15, no. 4, pp. 1353–1365, 2022.

    [28] H. Sankari, "Extensions to cryptographic methods using algebraic isometry," J. Cybersecurity Inf. Manage., vol. 11, no. 1, pp. 51–65, 2023.

    [29] A. Hazaymeh and R. Saadeh, "Applications of Hayashi's inequality in numerical analysis," Axioms, vol. 12, no. 5, art. No. 653, 2023.

    [30] R. A. Khan and J. Khalid, "Cubic B-spline techniques for nonlinear systems of boundary value problems," J. Math. Compute. Sci., vol. 21, pp. 131–152, 2023.

    [31] W. Abualhomos, M. Salameh, and N. A. Yaseen, "Algorithms for solving weak fuzzy Diophantine equations," Neutrosophic Sci., vol. 23, no. 4, pp. 291–300, 2023.

    [32] M. U. Romdhini, A. Al-Quran, and M. K. Tahat, "Exploring the algebraic structures of Q-complex neutrosophic soft fields," Int. J. Neutrosophic Sci., vol. 22, no. 4, pp. 93–105, 2023.

    [33] M. M. Abed and F. Al-Sharqi, "A certain condition on some rings give P.P. ring," J. Phys.: Conf. Ser., vol. 1818, no. 1, art. no. 012068, 2021.

    [34] A. Hazaymeh, "Time effective fuzzy soft set and its applications," Int. J. Neutrosophic Sci., vol. 23, no. 2, pp. 129–139, 2024.

    Cite This Article As :
    Odat, Naser. Epanechnikov-pareto Distribution with Application. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 147-155. DOI: https://doi.org/10.54216/IJNS.250412
    Odat, N. (2025). Epanechnikov-pareto Distribution with Application. International Journal of Neutrosophic Science, (), 147-155. DOI: https://doi.org/10.54216/IJNS.250412
    Odat, Naser. Epanechnikov-pareto Distribution with Application. International Journal of Neutrosophic Science , no. (2025): 147-155. DOI: https://doi.org/10.54216/IJNS.250412
    Odat, N. (2025) . Epanechnikov-pareto Distribution with Application. International Journal of Neutrosophic Science , () , 147-155 . DOI: https://doi.org/10.54216/IJNS.250412
    Odat N. [2025]. Epanechnikov-pareto Distribution with Application. International Journal of Neutrosophic Science. (): 147-155. DOI: https://doi.org/10.54216/IJNS.250412
    Odat, N. "Epanechnikov-pareto Distribution with Application," International Journal of Neutrosophic Science, vol. , no. , pp. 147-155, 2025. DOI: https://doi.org/10.54216/IJNS.250412