International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 3 , PP: 339-348, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Lindel ”Ofness Spaces in NTH Topological Spaces

Jamal Oudetallah 1 , Rehab Alharbi 2 * , Salsabiela Rawashdeh 3 , Ala Amourah 4

  • 1 Department of Mathematics, University of Petra, Amman, 11196, Jordan - (drjamal@inu.edu.jo)
  • 2 Department of Mathematics, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia - (ralharbi@jazanu.edu.sa)
  • 3 Department of Mathematics, Irbid National University, Irbid 2600, Jordan - (sabeelar27@gmail.com)
  • 4 Mathematics Education Program, Faculty of Education and Arts, Sohar University, Sohar 311, Oman; Applied Science Research Center. Applied Science Private University, Amman, Jordan - (AAmourah@su.edu.om)
  • Doi: https://doi.org/10.54216/IJNS.250330

    Received: March 20, 2024 Revised: June 15, 2024 Accepted: October 27, 2024
    Abstract

    In this study, the lindel”of property of spaces will be examined across nth topologies, referred to as nthlindel” of spaces. Furthermore, the characteristics of these spaces will be analyzed in relation to lindel¨o]f spaces and tri-Lindelf spaces. Several theoretical results have been presented and proven, and various well-known theorems concerning Lindel?f spaces have been extended to accommodate nth topologies. An illustrative examples are provided to support the findings.

    Keywords :

    lindel&rdquo , of spaces , Hausdorff , bitopological spaces , tri-topological spaces

    References

    [1] Dugundji ;J. ,( 1966). Topology, Allyn and Bacon, Boston.

    [2] J. Oudetallah , ON FEEBLY PAIRWISE EXPANDABLE SPACE, J. Math. Comput. Sci. 11 (2021), No. 5, 6216-6225

    [3] J. Oudetallah, Nearly Expandability in bitopological spaces, Advances in Mathematics: Scientific Journal 10 (2021), 705-712.

    [4] J. Kelley, General topology, Van Nostrand Company, 1955.. kyungpook Math.J.,32, No. 2(1992), 273- 284.

    [5] Kim,Y. W. (1968). Pairwise Compactness. Publ. Math. Debrecen.15, 87-90.

    [6] Levine; N. , (1963). Semi-Open Sets and Semi-Continuity in Topological Spaces , Amer. Math. Monthly, 70, 36-41.

    [7] Willard ; S., (1970).General Topology , Addison- Wesley Publishing Company, Inc.

     

    Cite This Article As :
    Oudetallah, Jamal. , Alharbi, Rehab. , Rawashdeh, Salsabiela. , Amourah, Ala. Lindel ”Ofness Spaces in NTH Topological Spaces. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 339-348. DOI: https://doi.org/10.54216/IJNS.250330
    Oudetallah, J. Alharbi, R. Rawashdeh, S. Amourah, A. (2025). Lindel ”Ofness Spaces in NTH Topological Spaces. International Journal of Neutrosophic Science, (), 339-348. DOI: https://doi.org/10.54216/IJNS.250330
    Oudetallah, Jamal. Alharbi, Rehab. Rawashdeh, Salsabiela. Amourah, Ala. Lindel ”Ofness Spaces in NTH Topological Spaces. International Journal of Neutrosophic Science , no. (2025): 339-348. DOI: https://doi.org/10.54216/IJNS.250330
    Oudetallah, J. , Alharbi, R. , Rawashdeh, S. , Amourah, A. (2025) . Lindel ”Ofness Spaces in NTH Topological Spaces. International Journal of Neutrosophic Science , () , 339-348 . DOI: https://doi.org/10.54216/IJNS.250330
    Oudetallah J. , Alharbi R. , Rawashdeh S. , Amourah A. [2025]. Lindel ”Ofness Spaces in NTH Topological Spaces. International Journal of Neutrosophic Science. (): 339-348. DOI: https://doi.org/10.54216/IJNS.250330
    Oudetallah, J. Alharbi, R. Rawashdeh, S. Amourah, A. "Lindel ”Ofness Spaces in NTH Topological Spaces," International Journal of Neutrosophic Science, vol. , no. , pp. 339-348, 2025. DOI: https://doi.org/10.54216/IJNS.250330