International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 2 , PP: 254-262, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

A note on Category of SuperHyper BCI-Algebra

Santhakumar .S 1 * , Sumathi .I .R 2 , Mahalakshmi .J 3

  • 1 Department of Mathematics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India - (santhakumar@cb.amrita.edu)
  • 2 Department of Mathematics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India - (sumathi@cb.amrita.edu)
  • 3 Department of Mathematics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India - (mahalakshmi@cb.amrita.edu)
  • Doi: https://doi.org/10.54216/IJNS.250221

    Received: February 20, 2024 Revised: May 12, 2024 Accepted: August 19, 2024
    Abstract

    In this paper, we have put forward the SH-homo and 0preserving SH-homo to compare two SH groupoids along with few examples. Some properties of SH-homo and 0preserving SH-homo are explored. Also, we proved the SH-homo between two SuperHyper BCI-Algebra is 0preserving SH-homo. Finally, the category of SuperHyper Groupoid, SuperHyper BCI-Algebra and Neutrosophic SuperHyper BCI-Algebra were investigated.

    Keywords :

    Category , SuperHyper operation , SuperHyper homomorphism , Neutrosophic SuperHyper homomorphism

    References

    [1] Jiˇr´ı Ad´amek, Horst Herrlich, and George Strecker. Abstract and concrete categories. Wiley- Interscience, 1990.

     

    [2] Krassimir T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1):87–96, 1986.

    [3] Samuel Eilenberg and Saunders MacLane. General theory of natural equivalences. Transactions of the American Mathematical Society, 58(2):231–294, 1945.

    [4] Patrik Eklund, M Angeles Galan, Robert Helgesson, and Jari Kortelainen. Fuzzy terms. Fuzzy Sets and Systems, 256:211–235, 2014.

    [5] Jaime G´omez-Ram´ırez. A new foundation for representation in cognitive and brain science. Netherland. Netherlands: Springer, pages 141–60, 2014.

    [6] John Harding, Carol Walker, and Elbert Walker. Categories with fuzzy sets and relations. Fuzzy sets and Systems, 256:149–165, 2014.

    [7] H Herrlich and GE Strecker. Category theory, allyn bacon, 1979.

    [8] Seok Jong Lee and Eun Pyo Lee. The category of intuitionistic fuzzy topological spaces. Bulletin- Korean Mathematical Society, 37(1):63–76, 2000.

    [9] Jir´ı Mockor. Fuzzy sets in categories of sets with similarity relations. In Computational Intelligence, Theory and Applications: International Conference 9th Fuzzy Days in Dortmund, Germany, Sept. 18– 20, 2006 Proceedings, pages 677–682. Springer, 2006.

    [10] Hossein Rashmanlou, Sovan Samanta, Madhumangal Pal, and Rajab Ali Borzooei. Intuitionistic fuzzy graphs with categorical properties. Fuzzy information and Engineering, 7(3):317–334, 2015.

    [11] S Santhakumar, IR Sumathi, and J Mahalakshmi. A novel approach to the algebraic structure of neutrosophic superhyper algebra. Neutrosophic Sets and Systems, 60(1):39, 2023.

    [12] Poonam Kumar Sharma, Chandni, and Nitin Bhardwaj. Category of intuitionistic fuzzy modules. Mathematics, 10(3):399, 2022.

    [13] Florentin Smarandache. A unifying field in logics: Neutrosophic logic. In Philosophy, pages 1–141. American Research Press, 1999.

    [14] Florentin Smarandache. Introduction to superhyperalgebra and neutrosophic superhyperalgebra. Journal of Algebraic Hyperstructures and Logical Algebras, 3, 03 2022.

    [15] Lawrence Neff Stout. Topoi and categories of fuzzy sets. Fuzzy Sets and Systems, 12(2):169–184, 1984.

    [16] Michio Sugeno and Moritoshi Sasaki. L-fuzzy category. Fuzzy Sets and Systems, 11(1-3):43–64, 1983.

    [17] Carol L Walker. Categories of fuzzy sets. Soft Computing, 8:299–304, 2004.

    [18] CK Wong. Categories of fuzzy sets and fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 53(3):704–714, 1976.

    [19] Lotfi Asker Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

    Cite This Article As :
    .S, Santhakumar. , .I, Sumathi. , .J, Mahalakshmi. A note on Category of SuperHyper BCI-Algebra. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 254-262. DOI: https://doi.org/10.54216/IJNS.250221
    .S, S. .I, S. .J, M. (2025). A note on Category of SuperHyper BCI-Algebra. International Journal of Neutrosophic Science, (), 254-262. DOI: https://doi.org/10.54216/IJNS.250221
    .S, Santhakumar. .I, Sumathi. .J, Mahalakshmi. A note on Category of SuperHyper BCI-Algebra. International Journal of Neutrosophic Science , no. (2025): 254-262. DOI: https://doi.org/10.54216/IJNS.250221
    .S, S. , .I, S. , .J, M. (2025) . A note on Category of SuperHyper BCI-Algebra. International Journal of Neutrosophic Science , () , 254-262 . DOI: https://doi.org/10.54216/IJNS.250221
    .S S. , .I S. , .J M. [2025]. A note on Category of SuperHyper BCI-Algebra. International Journal of Neutrosophic Science. (): 254-262. DOI: https://doi.org/10.54216/IJNS.250221
    .S, S. .I, S. .J, M. "A note on Category of SuperHyper BCI-Algebra," International Journal of Neutrosophic Science, vol. , no. , pp. 254-262, 2025. DOI: https://doi.org/10.54216/IJNS.250221