International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 1 , PP: 247-257, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Energy of Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Graphs in Decision Making-A Literature Review

Sasipriya A. S. 1 * , Hemant Kumar 2

  • 1 Faculty of Engineering and Technology, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha, Maharashtra, India - (sasipriya.feat@dmiher.edu.in)
  • 2 Faculty of Engineering and Technology, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha, Maharashtra, India - (hemantk.feat@dmiher.edu.in)
  • Doi: https://doi.org/10.54216/IJNS.250123

    Received: December 12, 2023 Revised: February 07, 2024 Accepted: July 04, 2024
    Abstract

    This review of the literature delves into the complex interplay between energy measures and decision-making processes in the domains of fuzzy graphs, intuitionistic fuzzy graphs, and neutrosophic graphs. In graph theory, energy is a key quantity that is used to measure structural properties and evaluate decision model dynamics. The research methodically examines the theoretical underpinnings, computational techniques, and practical applications of energy measures in contexts involving decision-making, considering the special features brought forth by fuzzy, intuitionistic fuzzy, and neutrosophic graph models. This review attempts to provide a thorough understanding for researchers and practitioners looking to use energy measures for efficient decision support in the setting of uncertainty contained within these specific graph topologies by synthesizing prior research.

     

    Keywords :

    Fuzzy graphs , energy , uncertainty , decision-making , intuitionistic fuzzy graphs , neutrosophic graphs , graph theory.

      ,

    References

    [1]  Narayanan, A., & Mathew, S. (2013). Energy of a fuzzy graph. Annals of Fuzzy Mathematics and Informatics, 6(3), 455-465.

    [2]  Rahimi Sharbaf, S., & Fayazi, F. (2014). Laplacian Energy of a Fuzzy Graph. Iranian Journal of Mathematical Chemistry, 5(1), 1-10.

    [3]  Naz, S., Ashraf, S., & Karaaslan, F. (2018). Energy of a bipolar fuzzy graph and its application in decision making. Italian Journal of Pure and Applied Mathematics, 40, 339-352.

    [4]  Akram, M., & Naz, S. (2018). Energy of pythagorean fuzzy graphs with applications. Mathematics, 6(8). https://doi.org/10.3390/math6080136

    [5]  Sarwar, M., Akram, M., & Zafar, F. (2018). Decision Making Approach Based on Competition Graphs and Extended TOPSIS Method under Bipolar Fuzzy Environment. Mathematical and Computational Applications, 23(4), 68. https://doi.org/10.3390/mca23040068

    [6]  Akram, M., Saleem, D., & Ghorai, G. (2019). Energy of m-polar fuzzy digraphs. In Handbook of Research on Advanced Applications of Graph Theory in Modern Society (pp. 469–491). IGI Global. https://doi.org/10.4018/978-1-5225-9380-5.ch020

    [7]  Mohamed, S. Y., & Ali, A. M. (2020). Energy of spherical fuzzy graphs. Advances in Mathematics: Scientific Journal, 9(1), 321–332. https://doi.org/10.37418/amsj.9.1.26

    [8]  Patra, N., Mondal, S., Pal, M., & Mondal, S. (2021). Energy of interval-valued fuzzy graphs and its application in ecological systems. Journal of Applied Mathematics and Computing. 68, 3327–3345. https://doi.org/10.1007/s12190-021-01665-z

    [9]  Li, S., Wan, C., Talebi, A. A., & Mojahedfar, M. (2022). Energy of Vague Fuzzy Graph Structure and Its Application in Decision Making. Symmetry, 14(10). https://doi.org/10.3390/sym14102081

    [10]                 Rajeshwari, M. (2022). Fuzzy Bipolar Pythagorean Graphs with Laplacian Energy. International Journal of Mechanical Engineering, 7(1).

    [11]                 Chandrasekaran, V. M., Praba, B., & Deepa, G. (2014). Energy of an Intuitionistic Fuzzy Graph. Italian Journal of Pure and Applied Mathematics, vol.32, 431-444.

    [12]                 Sharief Basha, S., & Kartheek, E. (2015). Laplacian energy of an intuitionistic fuzzy graph. Indian Journal of Science and Technology, 8(33). https://doi.org/10.17485/ijst/2015/v8i33/79899

    [13]                 Deepa, G., Praba, B., & Chandrasekaran, V. M. (2016a). A study on energy of an intuitionistic fuzzy directed graph. Research Journal of Pharmacy and Technology (Vol. 9, Issue 2, pp. 190–195). https://doi.org/10.5958/0974-360X.2016.00034.2

    [14]                 Deepa, G., Praba, B., & Chandrasekaran, V. M. (2016b). Spreading rate of virus on energy of Laplacian intuitionistic fuzzy graph. Research Journal of Pharmacy and Technology, 9(8), 1140–1144. https://doi.org/10.5958/0974-360X.2016.00217.1

    [15]                 Praba, B., Deepa, G., & Chandrasekaran, V. M. (2018). Lower and upper bound of the laplacian energy with real and complex roots of an intuitionistic fuzzy directed graph. International Journal of Applied Systemic Studies, 8(3), 196–217. https://doi.org/10.1504/IJASS.2018.096097

    [16]                 Deepa, G., Praba, B., Chandrasekaran, V. M., & Rajakumar, K. S. (2019). Bounds for the real and complex eigen values of energy of the dominating intuitionistic fuzzy graph. International Journal of Recent Technology and Engineering, 8(2), 2354–2359. https://doi.org/10.35940/ijrte.F2403.078219

    [17]                 Ramesh, O., & Sharief Basha, S. (2020). Group decision making of selecting partner based on signless laplacian energy of an intuitionistic fuzzy graph with topsis method: Study on matlab programming. Advances in Mathematics: Scientific Journal, 9(8), 5849–5859. https://doi.org/10.37418/amsj.9.8.52

    [18]                 Alnaser, A. M. A., AlZoubi, W. A., & Massadeh, M. O. (2020). Bipolar Intuitionistic Fuzzy Graphs and its Matrices. Applied Mathematics and Information Sciences, 14(2), 205–214. https://doi.org/10.18576/amis/140204

    [19]                 Li, W., & Ye, J. (2023). MAGDM Model Using an Intuitionistic Fuzzy Matrix Energy Method and Its Application in the Selection Issue of Hospital Locations. Axioms, 12(8). https://doi.org/10.3390/axioms12080766

    [20]                 Akula, N. K., & Sharief Basha, S. (2023). Regression coefficient measure of intuitionistic fuzzy graphs with application to soil selection for the best paddy crop. AIMS Mathematics, 8(8), 17631–17649. https://doi.org/10.3934/math.2023900

    [21]                 Naz, S., Akram, M., & Smarandache, F. (2018). Certain notions of energy in single-valued neutrosophic graphs. Axioms, 7(3), 50. https://doi.org/10.3390/axioms7030050

    [22]                 Abdel-Basset, M., Mohamed, M., & Smarandache, F. (2018). An extension of neutrosophic AHP-SWOT analysis for strategic planning and decision-making. Symmetry, 10(4), 116. https://doi.org/10.3390/sym10040116

    [23]                 Broumi, S., Talea, M., Bakali, A., Singh, P. K., & Smarandache, F. (2019). Energy and spectrum analysis of interval valued neutrosophic graph using MATLAB. Neutrosophic Sets and Systems, 24(1). https://doi.org/10.5281/zenodo.2593919

    [24]                 Broumi, S. (2019). Shortest path problem using Bellman algorithm under neutrosophic environment. Journal of Ambient Intelligence and Humanized Computing, 5(4), 529-536. https://doi.org/10.1007/s40747-019-0101-8

    [25]                 Şahin, R. (2019). An approach to neutrosophic graph theory with applications. Soft Computing, 23(2), 487-498. https://doi.org/10.1007/s00500-017-2875-1

    [26]                 Khan, M., Umar, S., & Broumi, S. (2019). Laplacian energy of a complex neutrosophic graph. In S. Broumi, F. Smarandache, & M. Talea (Eds.), Neutrosophic graphs, networks and systems (pp. 203-232). Springer.

    [27]                 Mullai, M., & Broumi, S. (2020). Dominating energy in neutrosophic graphs. International Journal of Neutrosophic Science, 5, 38-58.

    [28]                 Malik, M. A., Rashmanlou, H., Shoaib, M., Borzooei, R. A., Taheri, M., & Broumi, S. (2020). A study on bipolar single-valued neutrosophic graphs with novel application. Neutrosophic Sets and Systems, 32(1), 1-20.

    [29]                 Das, K., Samanta, S., Khan, S. K., Naseem, U., & De, K. (2020). A study on discrete mathematics: Sum distance in neutrosophic graphs with application. Neutrosophic Sets and Systems, 35(1), 1-16.

    [30]                 Sayyadi Tooranloo, H., Zanjirchi, S. M., & Tavangar, M. (2020). ELECTRE approach for multi-attribute decision-making in refined neutrosophic environment. Neutrosophic Sets and Systems, 31(1), 1-16.

    [31]                 Zeng, S., Shoaib, M., Ali, S., Smarandache, F., Rashmanlou, H., & Mofidnakhaei, F. (2021). Certain properties of single-valued neutrosophic graph with application in food and agriculture organization. Neutrosophic Sets and Systems, 14(1), 1-20. https://doi.org/10.2991/ijcis.d.210413.001

    [32]                 Mohamad, S. N. F., Hasni, R., Smarandache, F., & Yusoff, B. (2021). Novel concept of energy in bipolar single-valued neutrosophic graphs with applications. Axioms, 10(3), 172. https://doi.org/10.3390/axioms10030172

    [33]                 Sivakumar, S., & Broumi, S. (2022). Balanced neutrosophic graphs. Neutrosophic Sets and Systems, 50, 309-319.

    [34]                 Broumi, S., Sundareswaran, R., Shanmugapriya, M., Bakali, A., & Talea, M. (2022). Theory and applications of Fermatean neutrosophic graphs. Neutrosophic Sets and Systems, 50, 248-286.

    [35]                 Broumi, S., Mohanaselvi, S., Witczak, T., Talea, M., Bakali, A., & Smarandache, F. (2023). Complex Fermatean neutrosophic graph and application to decision making. Decision Making: Applications in Management and Engineering, 6(1), 474-501.

    [36]                 Dhouib, S., Vidhya, K., Broumi, S., & Talea, M. (2024). Solving the Minimum Spanning Tree Problem Under Interval Valued Fermatean Neutrosophic Domain. Neutrosophic Sets and Systems, 67,11-20.

     
    Cite This Article As :
    A., Sasipriya. , Kumar, Hemant. Energy of Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Graphs in Decision Making-A Literature Review. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 247-257. DOI: https://doi.org/10.54216/IJNS.250123
    A., S. Kumar, H. (2025). Energy of Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Graphs in Decision Making-A Literature Review. International Journal of Neutrosophic Science, (), 247-257. DOI: https://doi.org/10.54216/IJNS.250123
    A., Sasipriya. Kumar, Hemant. Energy of Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Graphs in Decision Making-A Literature Review. International Journal of Neutrosophic Science , no. (2025): 247-257. DOI: https://doi.org/10.54216/IJNS.250123
    A., S. , Kumar, H. (2025) . Energy of Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Graphs in Decision Making-A Literature Review. International Journal of Neutrosophic Science , () , 247-257 . DOI: https://doi.org/10.54216/IJNS.250123
    A. S. , Kumar H. [2025]. Energy of Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Graphs in Decision Making-A Literature Review. International Journal of Neutrosophic Science. (): 247-257. DOI: https://doi.org/10.54216/IJNS.250123
    A., S. Kumar, H. "Energy of Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Graphs in Decision Making-A Literature Review," International Journal of Neutrosophic Science, vol. , no. , pp. 247-257, 2025. DOI: https://doi.org/10.54216/IJNS.250123