Volume 25 , Issue 1 , PP: 239-245, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Nawal Mahmood Hammood 1 , Nadwa Khazaal Rashad 2 , Zakariya Yahya Algamal 3
Doi: https://doi.org/10.54216/IJNS.250122
The Topp-Leone Extended Exponential distribution is used to simulate human lifetime data patterns in the field of survival analysis. To characterize a variety of uncertain survival data, the neutrosophic Topp-Leone extended exponential distribution (NTLEED) is used. The specified distribution is a great tool for modeling unknown data that is somewhat positively biased. This study covers the primary statistical properties of the constructed NTLEED, including the survival function, hazard rate, and neutrosophic moments. In addition, the neutrosophic parameters are estimated using the popular maximum likelihood estimation technique. To determine whether the predicted neutrosophic parameters were obtained, a simulation study is carried out. Not to mention that actual data has been used to discuss potential real-world applications of NTLEED. Real data were utilized to demonstrate how well the proposed model performed in contrast to the current distributions.
Survival analysis , Neutrosophic statistics , hazard function , bladder cancer , Topp-Leone Extended Exponential distribution.
[1] Ahsan-ul-Haq, M. (2022). Neutrosophic Kumaraswamy distribution with engineering application. Neutrosophic Sets Systems, 49(1), 269-276.
[2] Alanaz, M. M., & Algamal, Z. Y. (2023). Neutrosophic exponentiated inverse Rayleigh distribution: Properties and Applications. International Journal of Neutrosophic Science, 21(4), 36-43.
[3] Alanaz, M. M., Mustafa, M. Y., & Algamal, Z. Y. (2023). Neutrosophic Lindley distribution with application for Alloying Metal Melting Point. International Journal of Neutrosophic Science, 21(4), 65-65-71.
[4] Albassam, M., Ahsan-ul-Haq, M., & Aslam, M. (2023). Weibull distribution under indeterminacy with applications. AIMS Mathematics, 8(5), 10745-10757.
[5] Algamal, Z. Y., Alobaidi, N. N., Hamad, A. A., Alanaz, M. M., & Mustafa, M. Y. (2024). Neutrosophic Beta-Lindley distribution: Mathematical properties and modeling bladder cancer data. International Journal of Neutrosophic Science, 23(2), 186-186-194.
[6] Alsoboh, A., Amourah, A., Darus, M., & Sharefeen, R. I. A. (2023). Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions. Mathematics, 11(4), 868.
[7] Aslam, M. (2019). A new failure-censored reliability test using neutrosophic statistical interval method. International Journal of Fuzzy Systems, 21, 1214-1220.
[8] Aslam, M. A. (2020). Neutrosophic Rayleigh distribution with some basic properties and application. In Neutrosophic Sets in Decision Analysis and Operations Research (pp. 119-128): IGI Global.
[9] Atchadé, M. N., N'bouké, M. A., Djibril, A. M., Al Mutairi, A., Mustafa, M. S., Hussam, E., . . . Nassr, S. G. (2024). A new Topp-Leone Kumaraswamy Marshall-Olkin generated family of distributions with applications. Heliyon, 10(2).
[10] Bibani, A. A., & Algamal, Z. Y. (2023). Survival Function Estimation for Fuzzy Gompertz Distribution with neutrosophic data. International Journal of Neutrosophic Science, 21(3), 137-137-142.
[11] Duan, W.-Q., Khan, Z., Gulistan, M., & Khurshid, A. (2021). Neutrosophic exponential distribution: modeling and applications for complex data analysis. Complexity, 2021(1), 5970613.
[12] Granados, C. (2022). Some discrete neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables. Hacettepe Journal of Mathematics Statistics, 51(5), 1442-1457.
[13] Hassan, M. K., & Aslam, M. (2023). DUS-neutrosophic multivariate inverse Weibull distribution: properties and applications. Complex Intelligent Systems, 9(5), 5679-5691.
[14] Guan, H., Dai, Z., Guan, S., & Zhao, A. (2019). A neutrosophic forecasting model for time series based on first-order state and information entropy of high-order fluctuation. Entropy, 21(5), 455.
[15] Khan, Z., Almazah, M. M., Hamood Odhah, O., & Alshanbari, H. M. (2022). Generalized pareto model: properties and applications in neutrosophic data modeling. Mathematical Problems in Engineering, 2022(1), 3686968.
[16] Khan, Z., Amin, A., Khan, S. A., & Gulistan, M. (2021). Statistical development of the neutrosophic lognormal model with application to environmental data. Neutrosophic Sets Systems, 47(1), 1.
[17] Khan, Z., Gulistan, M., Kausar, N., & Park, C. (2021). Neutrosophic Rayleigh model with some basic characteristics and engineering applications. IEEE Access, 9, 71277-71283.
[18] Khaoula, A., Seddik-Ameur, N., Ahmad, A. E.-B. A., & Khaleel, M. A. (2022). The Topp-Leone Extended Exponential Distribution: Estimation Methods and Applications. Pakistan Journal of Statistics Operation Research, 18(4), 817-836.
[19] Lee, E. T., & Wang, J. (2003). Statistical methods for survival data analysis (Vol. 476): John Wiley & Sons.
[20] Mao, X., Guoxi, Z., Fallah, M., & Edalatpanah, S. (2020). A Neutrosophic‐Based Approach in Data Envelopment Analysis with Undesirable Outputs. Mathematical problems in engineering, 2020(1), 7626102.
[21] Mustafa, M. Y., & Algamal, Z. Y. (2023). Neutrosophic inverse power Lindley distribution: A modeling and application for bladder cancer patients. International Journal of Neutrosophic Science, 21(2), 216-216-223.
[22] Rao, G. S. (2023). Neutrosophic Log-Logistic Distribution Model in Complex Alloy Metal Melting Point Applications. International Journal of Computational Intelligence Systems, 16(1), 48.
[23] Shah, F., Aslam, M., Khan, Z., Almazah, M., & Alduais, F. S. [Retracted] On Neutrosophic Extension of the Maxwell Model: Properties and Applications. Journal of Function Spaces, 2022.
[24] Smarandache, F. (1999). A unifying field in Logics: Neutrosophic Logic. In Philosophy (pp. 1-141): American Research Press.
[25] Smarandache, F. (2013). Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability: Infinite Study.
[26] Smarandache, F. (2022). Neutrosophic Statistics is an extension of Interval Statistics, while Plitogenic Statistics is the most general form of statistics (Fourth version)/La Estadistica Neutrosofica es una extension de la Estadistica de Intervalos, mientras que la Estadistica Plitogenica es la forma mas general de estadistica.(Cuarta version). Neutrosophic Computing Machine Learning, 23, 21-39.
[27] Taş, F., Topal, S., & Smarandache, F. (2018). Clustering neutrosophic data sets and neutrosophic valued metric spaces. Symmetry, 10(10), 430.