International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 1 , PP: 93-103, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Automated Credit Card Risk Assessment using Fuzzy Parameterized Neutrosophic Hypersoft Expert Set

Mohammed Abdullah Al-Hagery 1 , Abdalla I. Abdalla Musa 2

  • 1 Department of Computer Science, College of Computer, Qassim University, Buraydah, Saudi Arabia - (hajry@qu.edu.sa)
  • 2 Department of Computer Science, College of Computer, Qassim University, Buraydah, Saudi Arabia - (ab.musa@qu.edu.sa)
  • Doi: https://doi.org/10.54216/IJNS.250108

    Received: January 02, 2024 Revised: March 07, 2024 Accepted: June 01, 2024
    Abstract

    In the financial industry, financial fraud is an ever-evolving risk with extreme consequences. Data mining has been instrumental in the recognition of credit card fraud (CCF) during online transactions. CCF recognition, which is a data mining problem, become a challenge owing to its two main reasons - firstly, the profiles of fraudulent and normal behaviors modify continually and then, CCF dataset is extremely lopsided. The implementation of fraud recognition in credit card transactions is tremendously influenced by the sampling methodology on data, detection approach and variable selection utilized. The conception of the neutrosophic hypersoft set (NHSS) is a parameterized family that handles the sub-attributes of the parameter and is an appropriate extension of the NHSS to correctly evaluate the uncertainty, deficiencies, and anxiety in decision-making. In comparison to previous research, NHSS can accommodate additional uncertainty, which is the crucial approach to describe fuzzy datasets in the decision-making algorithm. This study introduces an Automated Credit Card Risk Assessment using Fuzzy Parameterized Neutrosophic Hypersoft Expert Set (ACCRA-FPNHES) technique. In the ACCRA-FPNHES technique, a three-step process is involved. As a primary step, the ACCRA-FPNHES technique designs sparrow search algorithm (SSA) for choosing features. In the second step, the detection of CCF takes place using FPNHES technique. Finally, in the third step, the parameters related to the FPNHES technique can be adjusted by arithmetic optimization algorithm (AOA). The simulation validation of the ACCRA-FPNHES technique can be studied on credit card dataset. The obtained values indicate that the ACCRA-FPNHES technique showcases better performance

    Keywords :

    Machine learning , Risk assessment , Artificial intelligence , Neutrosophic sets , Soft sets , Learning system

    References

    [1]     Smarandache F., and Abobala, M., " n-Refined Neutrosophic Vector Spaces", International Journal of Neutrosophic Science, Vol. 7, pp. 47-54, 2020.

    [2]     Tuqa A. H. Al-Tamimi, Luay A. A. Al-Swidi , Ali H. M. Al-Obaidi. "Partner Sets for Generalizations of MultiNeutrosophic Sets." International Journal of Neutrosophic Science, Vol. 24, No. 1, 2024 ,PP. 08-13

    [3]     Parimala, M., Karthika, M. and Smarandache, F., 2020. A review of fuzzy soft topological spaces, intuitionistic fuzzy soft topological spaces and neutrosophic soft topological spaces. International Journal of Neutrosophic Science, Vol. 10, No. 2, 2020 ,PP. 96-104.

    [4]     Ashraf, S. and Abdullah, S., 2020. Decision support modeling for agriculture land selection based on sine trigonometric single valued neutrosophic information. International Journal of Neutrosophic Science (IJNS), 9(2), pp.60-73.

    [5]     Ashraf, S. and Abdullah, S., 2020. Decision support modeling for agriculture land selection based on sine trigonometric single valued neutrosophic information. International Journal of Neutrosophic Science (IJNS), 9(2), pp.60-73.

    [6]     Li, Z., Huang, M., Liu, G., & Jiang, C. (2021). A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection. Expert Systems with Applications, 175, 114750.

    [7]     Fu, K., Cheng, D., Tu, Y., & Zhang, L. (2016). Credit card fraud detection using convolutional neural networks. In International conference on neural information processing (pp. 483–490). Cham: Springer.

    [8]     Forough, J., & Momtazi, S. (2021). Ensemble of deep sequential models for credit card fraud detection. Applied Soft Computing, 99, 106883.

    [9]     Russac, Y., Caelen, O., & He-Guelton, L. (2018). Embeddings of categorical variables for sequential data in fraud context. In International conference on advanced machine learning technologies and applications (pp. 542–552). Cham: Springer.

    [10]   Zhang, X., Han, Y., Xu, W., & Wang, Q. (2020). HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture. Information Sciences.

    [11]   Dornadula, V.N. and Geetha, S., 2019. Credit card fraud detection using machine learning algorithms. Procedia computer science, 165, pp.631-641.

    [12]   Albahli, S., Irtaza, A., Nazir, T., Mehmood, A., Alkhalifah, A. and Albattah, W., 2022. A machine learning method for prediction of stock market using real-time twitter data. Electronics, 11(20), p.3414.

    [13]   Alajlan, N.N. and Ibrahim, D.M., 2022. TinyML: Enabling of inference deep learning models on ultra-low-power IoT edge devices for AI applications. Micromachines, 13(6), p.851.

    [14]   Aladhadh, S., Alwabli, H., Moulahi, T. and Al Asqah, M., 2022. Bchainguard: a new framework for cyberthreats detection in blockchain using machine learning. Applied Sciences, 12(23), p.12026.

    [15]   Alsaheel, A., Alhassoun, R., Alrashed, R., Almatrafi, N., Almallouhi, N. and Albahli, S., 2023. Deep Fakes in Healthcare: How Deep Learning Can Help to Detect Forgeries. Computers, Materials & Continua, 76(2).

    [16]   Wang, Y., Wu, Z., Gao, J., Liu, C. and Guo, F., 2024. A multi-level classification based ensemble and feature extractor for credit risk assessment. PeerJ Computer Science, 10, p.e1915.

    [17]   Mienye, I.D. and Sun, Y., 2023. A machine learning method with hybrid feature selection for improved credit card fraud detection. Applied Sciences, 13(12), p.7254.

    [18]   Khalid, A.R., Owoh, N., Uthmani, O., Ashawa, M., Osamor, J. and Adejoh, J., 2024. Enhancing credit card fraud detection: an ensemble machine learning approach. Big Data and Cognitive Computing, 8(1), p.6.

    [19]   Yin, W., Kirkulak-Uludag, B., Zhu, D. and Zhou, Z., 2023. Stacking ensemble method for personal credit risk assessment in Peer-to-Peer lending. Applied Soft Computing, 142, p.110302.

    [20]   Liu, J., Liu, J., Wu, C. and Wang, S., 2024. Enhancing credit risk prediction based on ensemble treeā€based feature transformation and logistic regression. Journal of Forecasting, 43(2), pp.429-455.

    [21]   Kovur, K.M., Gedela, M. and Rao, A.M., 2023. Financial Risk Assessment using Machine Learning Engineering (FRAME): Scenario based Quantitative Analysis under Uncertainty. International Journal of Automation, Artificial Intelligence and Machine Learning, 3(1), pp.1-13.

    [22]   Liu, W., Liu, Z., Xiong, S. and Wang, M., 2023. Comparative prediction performance of the strength of a new type of Ti tailings cemented backfilling body using PSO-RF, SSA-RF, and WOA-RF models. Case Studies in Construction Materials, p.e02766.

    [23]   Ihsan, M., Saeed, M., Alanzi, A.M. and Khalifa, H.E.W., 2023. An algorithmic multiple attribute decision-making method for heart problem analysis under neutrosophic hypersoft expert set with fuzzy parameterized degree-based setting. PeerJ Computer Science, 9, p.e1607.

    [24]   Abdelfattah, H., Aseeri, A.O. and Abd Elaziz, M., 2024. Optimized FOPID controller for nuclear research reactor using enhanced planet optimization algorithm. Alexandria Engineering Journal, 97, pp.267-282.

    [25]   https://www.kaggle.com/datasets/uciml/german-credit

    [26]   Seera, M., Lim, C.P., Kumar, A., Dhamotharan, L. and Tan, K.H., 2024. An intelligent payment card fraud detection system. Annals of operations research, 334(1), pp.445-467.

    Cite This Article As :
    Abdullah, Mohammed. , I., Abdalla. Automated Credit Card Risk Assessment using Fuzzy Parameterized Neutrosophic Hypersoft Expert Set. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 93-103. DOI: https://doi.org/10.54216/IJNS.250108
    Abdullah, M. I., A. (2025). Automated Credit Card Risk Assessment using Fuzzy Parameterized Neutrosophic Hypersoft Expert Set. International Journal of Neutrosophic Science, (), 93-103. DOI: https://doi.org/10.54216/IJNS.250108
    Abdullah, Mohammed. I., Abdalla. Automated Credit Card Risk Assessment using Fuzzy Parameterized Neutrosophic Hypersoft Expert Set. International Journal of Neutrosophic Science , no. (2025): 93-103. DOI: https://doi.org/10.54216/IJNS.250108
    Abdullah, M. , I., A. (2025) . Automated Credit Card Risk Assessment using Fuzzy Parameterized Neutrosophic Hypersoft Expert Set. International Journal of Neutrosophic Science , () , 93-103 . DOI: https://doi.org/10.54216/IJNS.250108
    Abdullah M. , I. A. [2025]. Automated Credit Card Risk Assessment using Fuzzy Parameterized Neutrosophic Hypersoft Expert Set. International Journal of Neutrosophic Science. (): 93-103. DOI: https://doi.org/10.54216/IJNS.250108
    Abdullah, M. I., A. "Automated Credit Card Risk Assessment using Fuzzy Parameterized Neutrosophic Hypersoft Expert Set," International Journal of Neutrosophic Science, vol. , no. , pp. 93-103, 2025. DOI: https://doi.org/10.54216/IJNS.250108