Volume 24 , Issue 4 , PP: 257-267, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
Mohammed Qassim 1 * , Mohammed Abed Daim Zoba 2 * , Ahmed Hadi Hussain 3
Doi: https://doi.org/10.54216/IJNS.240419
In this work, fractional partial equations' and neutrosophic fractional partial equations analytical series solutions are presented, we consider the fractional derivative in the meaning of Caputo in these formulas. We offer a novel objective method the LRPS which is a strong instrument for precise analytically and numerical solutions to these problems by setting an excellent example, we stress precision, effectiveness, and application style, also we can find exact answers when there is a pattern between the series' parts; alternatively, we can only offer approximations. The Mathematica application is used to assess the numerical and graphical findings to make sure the solutions generated are accurate and that the approach can be modified to solve this kind of this problem. The findings obtained demonstrated that our current procedure is appropriate and efficient for resolving PDEs.
LRPS Method , Caputo , Fractional Order , Numerical Solutions, neutrosophic differential equations.
[1] Abu Arqub, O. (2019). Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space. Fundamenta Informaticae, 166(2), 87-110.
[2] Abdeljawad, T., Amin, R., Shah, K., Al-Mdallal, Q., & Jarad, F. (2020). Efficient sustainable algorithm for numerical solutions of systems of fractional order differential equations by Haar wavelet collocation method. Alexandria Engineering Journal, 59(4), 2391-2400.
[3] Akdemir, A. O., Dutta, H., & Atangana, A. (Eds.). (2020). Fractional order analysis: theory, methods and applications. John Wiley & Sons.
[4] Alabedalhadi, M., Al-Smadi, M., Al-Omari, S., Baleanu, D., & Momani, S. (2020). Structure of optical soliton solution for nonliear resonant space-time Schrödinger equation in conformable sense with full nonlinearity term. Physica Scripta, 95(10), 105215.
[5] AL-Smadi, M. H., & Gumah, G. N. (2014). On the homotopy analysis method for fractional SEIR epidemic model. Research Journal of Applied Sciences, Engineering and Technology, 7(18), 3809-3820.
[6] Al-Smadi, M., Freihat, A., Arqub, O. A., & Shawagfeh, N. (2015). A Novel Multistep Generalized Di¤ erential Transform Method for Solving Fractional-order Lü Chaotic and Hyperchaotic Systems. Journal of Computational Analysis & Applications, 19(1).
[7] Al-Smadi, M., Freihat, A., Hammad, M. M. A., Momani, S., & Arqub, O. A. (2016). Analytical approximations of partial differential equations of fractional order with multistep approach. Journal of Computational and Theoretical Nanoscience, 13(11), 7793-7801.
[8] Al-Smadi, M., Freihat, A., Khalil, H., Momani, S., & Ali Khan, R. (2017). Numerical multistep approach for solving fractional partial differential equations. International Journal of Computational Methods, 14(03), 1750029.
[9] Al-Smadi, M. (2018). Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation. Ain Shams Engineering Journal, 9(4), 2517-2525.
[10] Al-Smadi, M., & Arqub, O. A. (2019). Computational algorithm for solving Fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Applied Mathematics and Computation, 342, 280-294.
[11] Al‐Smadi, M., Abu Arqub, O., & Gaith, M. (2021). Numerical simulation of telegraph and Cattaneo fractional‐type models using adaptive reproducing kernel framework. Mathematical Methods in the Applied Sciences, 44(10), 8472-8489.
[12] Arqub, O. A., El-Ajou, A., & Momani, S. (2015). Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. Journal of Computational Physics, 293, 385-399.
[13] Baleanu, D., Golmankhaneh, A. K., Golmankhaneh, A. K., & Baleanu, M. C. (2009). Fractional electromagnetic equations using fractional forms. International Journal of Theoretical Physics, 48(11), 3114-3123.
[14] Bira, B., Raja Sekhar, T., & Zeidan, D. (2018). Exact solutions for some time‐fractional evolution equations using Lie group theory. Mathematical Methods in the Applied Sciences, 41(16), 6717-6725.
[15] Gambo, Y. Y., Ameen, R., Jarad, F., & Abdeljawad, T. (2018). Existence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives. Advances in Difference Equations, 2018(1), 1-13.
[16] El-Ajou, A., Arqub, O. A., & Momani, S. (2015). Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: a new iterative algorithm. Journal of Computational Physics, 293, 81-95.
[17] El-Ajou, A., Arqub, O. A., Momani, S., Baleanu, D., & Alsaedi, A. (2015). A novel expansion iterative method for solving linear partial differential equations of fractional order. Applied Mathematics and Computation, 257, 119-133.
[18] Eriqat, T., El-Ajou, A., Moa'ath, N. O., Al-Zhour, Z., & Momani, S. (2020). A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations. Chaos, Solitons & Fractals, 138, 109957.
[19] Hasan, S., El-Ajou, A., Hadid, S., Al-Smadi, M., & Momani, S. (2020). Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system. Chaos, Solitons & Fractals, 133, 109624.
[20] Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations (Vol. 204). Elsevier.
[21] Salama, A. Dalla, R. Al, M. Ali, R. (2022). On Some Results About The Second Order Neutrosophic Differential Equations By Using Neutrosophic Thick Function. Journal of Neutrosophic and Fuzzy Systems, 4( 1), 30-40. DOI: https://doi.org/10.54216/JNFS.040104
[22] Salama, A. Al, M. Dalla, R. Ali, R. (2022). A Study of Neutrosophic Differential Equations By Using the One-Dimensional Geometric AH-Isometry Of Neutrosophic Laplace Transformation. Journal of Neutrosophic and Fuzzy Systems, 4( 2), 08-25. DOI: https://doi.org/10.54216/JNFS.040201