International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 24 , Issue 3 , PP: 201-219, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Generalized p-Transmuted Neutrosophic Distributions: Theory and its Applications

Abdul Kani Jabarali 1 * , K. Mohana 2 , David Winster Praveenraj Devanayan 3 , Ajitha Krishnaprasad 4 , D. Sandhya 5 , Pradeep Kumar SV 6

  • 1 Assistant Professor, Department of Statistics, Madras Christian College, East Tambaram - 600 059, Chengalpattu, Tamilnadu, India - (jabarali@mcc.edu.in)
  • 2 Assistant Professor (Selection Grade), Department of Mathematics, Nirmala College for Women, Red Fields, Coimbatore - 641 015, Tamilnadu, India - (riyaraju1116@gmail.com)
  • 3 Assistant Professor, CHRIST (Deemed to be University), Bangalore - 560 029, Karnataka, India - (david.winster@christuniversity.in)
  • 4 Assistant Professor, CHRIST (Deemed to be University), Bangalore - 560 029, Karnataka, India - (ajitha.krishnaprasad@christuniversity.in)
  • 5 Assistant Professor, CHRIST (Deemed to be University), Bangalore - 560 029, Karnataka, India - (pradeepkumar.sv@christuniversity.in)
  • 6 Assistant Professor, CHRIST (Deemed to be University), Bangalore - 560 029, Karnataka, India - (pradeepkumar.sv@christuniversity.in)
  • Doi: https://doi.org/10.54216/IJNS.240318

    Received: October 21, 2023 Revised: February 02, 2024 Accepted: May 14, 2024
    Abstract

    The study of neutrosophy offers a fresh approach for handling uncertain data with adaptability. This article explores the application of neutrosophic probability distribution in constructing a transmuted neutrosophic framework. Specifically, it introduces a generalized transmuted neutrosophic distribution. Building upon this generalization, quadratic and cubic transmuted distributions are developed and examined alongside certain lifetime distributions serving as foundational neutrosophic models. Additionally, an empirical investigation is conducted to assess the practicality and versatility of these distributions in real-world contexts.

    Keywords :

    Generalized p-transmuted distributions , neutrosophic distribution , life time distributions , empirical study

    References

    [1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

    [2] Atanassov, K. T., & Atanassov, K. T. (1999). Intuitionistic fuzzy sets (pp. 1-137). Physica-Verlag HD.

    [3] Smarandache F. A unifying field in logics: neutrosophic logic. Rehoboth: American Research Press; 1999.

    [4] Eugene, N., Lee, C., &Famoye, F. (2002). Beta-normal distribution and its applications. Communications in Statistics-Theory and methods, 31(4), 497-512.

    [5] Lee, E.T.; Wang, J. Statistical Methods for Survival Data Analysis. 2003, Vol. 476, John Wiley & Sons, Hoboken, NJ, USA.

    [6] Zografos, K., & Balakrishnan, N. (2009). On families of beta-and generalized gamma-generated distributions and associated inference. Statistical methodology, 6(4), 344-362.

    [7] Shaw, W. T., & Buckley, I. R. (2009). The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. arXiv preprint arXiv:0901.0434.

    [8] Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of statistical computation and simulation, 81(7), 883-898.

    [9] Alexander, C., Cordeiro, G. M., Ortega, E. M., & Sarabia, J. M. (2012). Generalized beta-generated distributions. Computational Statistics & Data Analysis, 56(6), 1880-1897.

    [10] Risti´c, M. M., & Balakrishnan, N. (2012). The gamma-exponentiated exponential distribution. Journal of statistical computation and simulation, 82(8), 1191-1206.

    [11] Torabi, H., & Hedesh, N. M. (2012). The gamma-uniform distribution and its applications. kybernetika, 48(1), 16-30.

    [12] Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71(1), 63-79.

    [13] Rahman, M. M., Al-Zahrani, B., & Shahbaz, M. Q. (2018). A general transmuted family of distributions. Pakistan Journal of Statistics and Operation Research, 451-469.

    Cite This Article As :
    Kani, Abdul. , Mohana, K.. , Winster, David. , Krishnaprasad, Ajitha. , Sandhya, D.. , Kumar, Pradeep. Generalized p-Transmuted Neutrosophic Distributions: Theory and its Applications. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 201-219. DOI: https://doi.org/10.54216/IJNS.240318
    Kani, A. Mohana, K. Winster, D. Krishnaprasad, A. Sandhya, D. Kumar, P. (2024). Generalized p-Transmuted Neutrosophic Distributions: Theory and its Applications. International Journal of Neutrosophic Science, (), 201-219. DOI: https://doi.org/10.54216/IJNS.240318
    Kani, Abdul. Mohana, K.. Winster, David. Krishnaprasad, Ajitha. Sandhya, D.. Kumar, Pradeep. Generalized p-Transmuted Neutrosophic Distributions: Theory and its Applications. International Journal of Neutrosophic Science , no. (2024): 201-219. DOI: https://doi.org/10.54216/IJNS.240318
    Kani, A. , Mohana, K. , Winster, D. , Krishnaprasad, A. , Sandhya, D. , Kumar, P. (2024) . Generalized p-Transmuted Neutrosophic Distributions: Theory and its Applications. International Journal of Neutrosophic Science , () , 201-219 . DOI: https://doi.org/10.54216/IJNS.240318
    Kani A. , Mohana K. , Winster D. , Krishnaprasad A. , Sandhya D. , Kumar P. [2024]. Generalized p-Transmuted Neutrosophic Distributions: Theory and its Applications. International Journal of Neutrosophic Science. (): 201-219. DOI: https://doi.org/10.54216/IJNS.240318
    Kani, A. Mohana, K. Winster, D. Krishnaprasad, A. Sandhya, D. Kumar, P. "Generalized p-Transmuted Neutrosophic Distributions: Theory and its Applications," International Journal of Neutrosophic Science, vol. , no. , pp. 201-219, 2024. DOI: https://doi.org/10.54216/IJNS.240318