International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 24 , Issue 3 , PP: 127-137, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

COPRAS Neutrosophic Approach with Big Data Analytics for Enhancing Multi-Dimensional Customer Churn Prediction on Corporate Performance Assessment

Adam Mohamed Omer 1 *

  • 1 Accounting Program, Applied College at Muhyle, King Khalid University, Kingdom of Saudi Arabia - (amahmeed@kku.edu.sa)
  • Doi: https://doi.org/10.54216/IJNS.240311

    Received: December 17, 2023 Revised: February 08, 2024 Accepted: May 16, 2024
    Abstract

    A neutrosophic set (NS) is a new computing technology that accesses ambiguous data through three memberships. A soft expert set (SES) is based on the concept of a “soft set” with an expert system. Now, this technique has been applied in different domains namely measurement theory, intelligent systems, game theory, probability theory, cybernetics, etc. Customer Churn prediction implies identifying which consumers are expected to cancel a subscription to a service or leave a service. It is a crucial forecast for several businesses because obtaining new users frequently costs more than holding existing ones. The Churn prediction modeling methods try to understand the accurate customer attributes and behaviors that signal the risk and timing of customers leaving. This manuscript offers the design of an AI-based Multi-Dimensional Customer Churn Prediction for Corporate Performance Assessment (AIMD-CCPCPA) technique. The AIMD-CCPCPA technique mainly aims to detect the presence of customer churns and non-churns. It involves a two-stage process. At the initial stage, the AIMD-CCPCPA technique exploits the COPRAS Neutrosophic Method for prediction purposes. Secondly, the AIMD-CCPCPA technique involves parameter selection using a butterfly optimization algorithm (BOA). The experimental analysis of the AIMD-CCPCPA model is examined using a benchmark dataset. The acquired outcomes stated the supremacy of the AIMD-CCPCPA technique equated to other models

    Keywords :

    Customer Churn Prediction , Neutrosophic Set , Butterfly Optimization Algorithm , Fuzzy Set , Intuitionistic Fundamental Sets , Corporate Performance Assessment.

    References

    [1]     Foju, S. W., Subramanian, S. & Khdr, M. H. Customer churn prediction in telecommunication industry using deep learning. Inf. Sci. Lett. 11(1), 185–198 (2022).

    [2]     Gupta, V. & Jatain, A. Artifcial intelligence based predictive analysis of customer churn. Formosa J. Comput. Inf. Sci. 2(1), 95–110 (2023).

    [3]     Qutub, A., Al-Mehmadi, A., Al-Hssan, M., Aljohani, R. & Aghamdi, H. S. Prediction of employee attrition using machine learning and ensemble methods. Int. J. Mach. Learn. Comput. 11(2), 110–114 (2021).

    [4]     Li, W. & Zhou, C. Customer churn prediction in telecom using big data analytics. IOP Conf. Ser. Mater. Sci. Eng. 768(5), 1–6 (2020).

    [5]     Nguyen, N. N. & Duong, A. T. Comparison of two main approaches for handling imbalanced data in churn prediction problem. J. Adv. Inf. Technol. 12(1), 29–35 (2021).

    [6]     Wahul, R. M., Kale, A. P. & Kota, P. N. An ensemble learning approach to enhance customer churn prediction in telecom industry. Int. J. Intell. Syst. Appl. Eng. 11(9), 258–266 (2023).

    [7]     Tuqa A. H. Al-Tamimi, Luay A. A. Al-Swidi , Ali H. M. Al-Obaidi. "Partner Sets for Generalizations of MultiNeutrosophic Sets." International Journal of Neutrosophic Science, Vol. 24, No. 1, 2024 ,PP. 08-13.

    [8]     Parimala, M., Karthika, M. and Smarandache, F., 2020. A review of fuzzy soft topological spaces, intuitionistic fuzzy soft topological spaces and neutrosophic soft topological spaces. International Journal of Neutrosophic Science, Vol. 10, No. 2, 2020 ,PP. 96-104.

    [9]     Smarandache F., and Abobala, M., " n-Refined Neutrosophic Vector Spaces", International Journal of Neutrosophic Science, Vol. 7, pp. 47-54, 2020.

    [10]   Ashraf, S. and Abdullah, S., 2020. Decision support modeling for agriculture land selection based on sine trigonometric single valued neutrosophic information. International Journal of Neutrosophic Science (IJNS), 9(2), pp.60-73.

    [11]   Noaman, I.A.R., Hasan, A.H. and Ahmed, S.M., 2024. Optimizing Weibull Distribution Parameters for Improved Earthquake Modeling in Japan: A Comparative Approach. International Journal of Neutrosophic Science, 24(1), pp.65-5.

    [12]   Doaa Nihad Tomma, L. A. A. Al-Swidi. "Necessary and Sufficient Conditions for a Stability of the Concepts of Stable Interior and Stable Exterior via Neutrosophic Crisp Sets." International Journal of Neutrosophic Science, Vol. 24, No. 1, 2024 ,PP. 87-93

    [13]   Mathews, P., Sebastian, L. and Thankachan, B., 2024. Neutrosophic Fuzzy Score Matrices: A Robust Framework for Advancing Medical Diagnostics. International Journal of Neutrosophic Science, 23(3), pp.08-8.

    [14]   R. Saarumathi, W. Ritha. (2024). A Legitimate Productive Repertoire Replica Betwixt Envirotech Outlay Towards Fragile Commodities Using Trapezoidal Neutrosophic Fuzzy Number. International Journal of Neutrosophic Science, 24 ( 1 ), 104-118

    [15]   Abobala, M., 2020. n-Cyclic Refined Neutrosophic Algebraic Systems Of Sub-Indeterminacies, An Application To Rings and Modules. International Journal of Neutrosophic Science, 12, pp.81-95.

    [16]   Abobala, M,. "Classical Homomorphisms Between Refined Neutrosophic Rings and Neutrosophic Rings", International Journal of Neutrosophic Science, Vol. 5, pp. 72-75, 2020.

    [17]   Yi, V.Q.J., Han, P.Y., You, L.Z., Yin, O.S. and Khoh, W.H., 2024. Predicting churn with filter-based techniques and deep learning. International Journal of Electrical & Computer Engineering (2088-8708), 14(2).

    [18]   Jajam, N., Challa, N.P., Prasanna, K.S. and Ch, V.S.D., 2023. Arithmetic Optimization with Ensemble Deep Learning SBLSTM-RNN-IGSA model for Customer Churn Prediction. IEEE Access.

    [19]   Pekel Ozmen, E. and Ozcan, T., 2022. A novel deep learning model based on convolutional neural networks for employee churn prediction. Journal of Forecasting, 41(3), pp.539-550.

    [20]   Bakhvalov, S., Osadchy, E., Bogdanova, I., Shichiyakh, R. and Lydia, E.L., 2024. Intelligent System for Customer Churn Prediction using Dipper Throat Optimization with Deep Learning on Telecom Industries. Fusion: Practice and Applications, 14(2), pp.172-72.

    [21]   Haridasan, V., Muthukumaran, K. and Hariharanath, K., 2023. Arithmetic Optimization with Deep Learning Enabled Churn Prediction Model for Telecommunication Industries. Intelligent Automation & Soft Computing, 35(3).

    [22]   Sedighimanesh, M., Sedighimanesh, A. and Gheisari, M., 2024. Optimizing Hyperparameters for Customer Churn Prediction with PSO-Enhanced Composite Deep Learning Techniques.

    [23]   Mengash, H.A., Alruwais, N., Kouki, F., Singla, C., Abd Elhameed, E.S. and Mahmud, A., 2023. Archimedes Optimization Algorithm-Based Feature Selection with Hybrid Deep-Learning-Based Churn Prediction in Telecom Industries. Biomimetics, 9(1), p.1.

    [24]   Anand, A., Agarwal, M. and Aggrawal, D., 2022. Multiple Criteria Decision-Making Methods: Applications for Managerial Discretion (Vol. 14). Walter de Gruyter GmbH & Co KG.

    [25]   He, K., Zhang, Y., Wang, Y.K., Zhou, R.H. and Zhang, H.Z., 2024. EABOA: Enhanced adaptive butterfly optimization algorithm for numerical optimization and engineering design problems. Alexandria Engineering Journal, 87, pp.543-573.

    [26]   https://www.kaggle.com/code/kmalit/bank-customer-churn-prediction/data

    [27]   Khattak, A., Mehak, Z., Ahmad, H., Asghar, M.U., Asghar, M.Z. and Khan, A., 2023. Customer churn prediction using composite deep learning technique. Scientific Reports, 13(1), p.17294

    Cite This Article As :
    Mohamed, Adam. COPRAS Neutrosophic Approach with Big Data Analytics for Enhancing Multi-Dimensional Customer Churn Prediction on Corporate Performance Assessment. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 127-137. DOI: https://doi.org/10.54216/IJNS.240311
    Mohamed, A. (2024). COPRAS Neutrosophic Approach with Big Data Analytics for Enhancing Multi-Dimensional Customer Churn Prediction on Corporate Performance Assessment. International Journal of Neutrosophic Science, (), 127-137. DOI: https://doi.org/10.54216/IJNS.240311
    Mohamed, Adam. COPRAS Neutrosophic Approach with Big Data Analytics for Enhancing Multi-Dimensional Customer Churn Prediction on Corporate Performance Assessment. International Journal of Neutrosophic Science , no. (2024): 127-137. DOI: https://doi.org/10.54216/IJNS.240311
    Mohamed, A. (2024) . COPRAS Neutrosophic Approach with Big Data Analytics for Enhancing Multi-Dimensional Customer Churn Prediction on Corporate Performance Assessment. International Journal of Neutrosophic Science , () , 127-137 . DOI: https://doi.org/10.54216/IJNS.240311
    Mohamed A. [2024]. COPRAS Neutrosophic Approach with Big Data Analytics for Enhancing Multi-Dimensional Customer Churn Prediction on Corporate Performance Assessment. International Journal of Neutrosophic Science. (): 127-137. DOI: https://doi.org/10.54216/IJNS.240311
    Mohamed, A. "COPRAS Neutrosophic Approach with Big Data Analytics for Enhancing Multi-Dimensional Customer Churn Prediction on Corporate Performance Assessment," International Journal of Neutrosophic Science, vol. , no. , pp. 127-137, 2024. DOI: https://doi.org/10.54216/IJNS.240311