International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 24 , Issue 2 , PP: 131-146, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Intuitionistic Possibility Fermatean Fuzzy Soft Sets

Shawkat Alkhazaleh 1 , Areen Al-khateeb 2 * , Hamzeh Zureigat 3 , Belal Batiha 4 , Rawan Almarashdeh 5

  • 1 Department of Mathematics, Faculty of Science and Technology, Jadara University, Irbid 21110, Jordan - (s.alkhazaleh@jadara.edu.jo)
  • 2 Department of Mathematics, Faculty of Science and Technology, Jadara University, Irbid 21110, Jordan - (areen.k@jadara.edu.jo)
  • 3 Department of Mathematics, Faculty of Science and Technology, Jadara University, Irbid 21110, Jordan - (hamzeh.zu@jadara.edu.jo)
  • 4 Department of Mathematics, Faculty of Science and Technology, Jadara University, Irbid 21110, Jordan - (b.bateha@jadara.edu.jo)
  • 5 Department of Mathematics, Faculty of Science and Technology, Jadara University, Irbid 21110, Jordan - (rawanow3@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.240212

    Received: December 23, 2023 Revised: February 18, 2024 Accepted: April 27, 2024
    Abstract

    In this study, we introduce a new concept by making Possibility Fermatean fuzzy soft sets into a more general concept, namely Intuitionistic Possibility Fermatean fuzzy soft sets. We present examples of the application of this theory to a decision-making problem. From a theoretical point of view, we review the basic properties of this model and define the operations essential to its framework. Comprehensive definitions of complement, union, and intersection, as well as AND and OR operations are meticulously presented. As a transition from theory to practical application within this innovative context, we present an algorithm for solving decision-making problems, contributing to the practical implementation of this extended concept. This research aims to improve our understanding of the intuitionistic possibility of Fermatean fuzzy soft sets and to bridge the gap between theoretical advances and their real-world utility in decision-making problems.

    Keywords :

    Fuzzy Set, Soft Set , Fuzzy Soft Set , Fermatean Fuzzy Set , Fermatean Fuzzy Soft Set , Intuitionistic Fuzzy Soft Set , Possibility Fuzzy Soft Set , Intuitionistic Possibility Fermatean Fuzzy Soft Set.

    References

    [1]     Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

    [2]     Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management science, 17(4), B-141.

    [3]     Atanassov, K. T., & Stoeva, S. (1986). Intuitionistic fuzzy sets. Fuzzy sets and Systems, 20(1), 87-96.

    [4]     Garg, H. (2016). A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems. Applied Soft Computing, 38, 988-999.

    [5]     Kirişci, M., & Şimşek, N. (2022). Decision making method related to Pythagorean Fuzzy Soft Sets with infectious diseases application. Journal of King Saud University-Computer and Information Sciences, 34(8), 5968-5978.

    [6]     Xu, Z., & Gou, X. (2017). An overview of interval-valued intuitionistic fuzzy information aggregations and applications. Granular Computing, 2, 13-39.

    [7]     Yager, R. R. (2015). Multicriteria decision making with ordinal/linguistic intuitionistic fuzzy sets for mobile apps. IEEE Transactions on Fuzzy Systems, 24(3), 590-599.

    [8]     Yager, R. R. (2013). Pythagorean membership grades in multicriteria decision making. IEEE Transactions on fuzzy systems, 22(4), 958-965.

    [9]     Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with applications, 37(4-5), 19-31.

    [10]    Maji, P. K., Biswas, R. K., & Roy, A. (2001). Fuzzy soft sets.

    [11]    Maji, P. K., Biswas, R., & Roy, A. R. (2001). Intuitionistic fuzzy soft sets. Journal of fuzzy mathematics, 9(3), 677-692.

    [12]    Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & mathematics with applications, 45(4-5), 555-562.

    [13]    Peng, X. D., Yang, Y., Song, J., & Jiang, Y. (2015). Pythagorean fuzzy soft set and its application. Computer engineering, 41(7), 224-229.

    [14]    Smarandache, F. (2019). Neutrosophic set is a generalization of intuitionistic fuzzy set, inconsistent intuitionistic fuzzy set (picture fuzzy set, ternary fuzzy set), pythagorean fuzzy set, spherical fuzzy set, and q-rung orthopair fuzzy set, while neutrosophication is a generalization of regret theory, grey system theory, and three-ways decision (revisited). Journal of New Theory, (29), 1-31.

    [15]    Athira, T. M., John, S. J., & Garg, H. (2019). Entropy and distance measures of Pythagorean fuzzy soft sets and their applications. Journal of Intelligent & Fuzzy Systems, 37(3), 4071-4084.

    [16]    Athira, T. M., John, S. J., & Garg, H. (2020). A novel entropy measure of Pythagorean fuzzy soft sets. AIMS Mathematics, 5(2), 1050-1061.

    [17]    Guleria, A., & Bajaj, R. K. (2019). On Pythagorean fuzzy soft matrices, operations and their applications in decision making and medical diagnosis. Soft Computing, 23, 7889-7900.

    [18]    Naeem, K., Riaz, M., Peng, X., & Afzal, D. (2019). Pythagorean fuzzy soft MCGDM methods based on TOPSIS, VIKOR and aggregation operators. Journal of Intelligent & Fuzzy Systems, 37(5), 6937-6957.

    [19]    Peng, X., & Yang, Y. (2015). Some results for Pythagorean fuzzy sets. International Journal of Intelligent Systems, 30(11), 1133-1160.

    [20]    Peng, X. D., & Yang, Y. (2016). Multiple attribute group decision making methods based on Pythagorean fuzzy linguistic set. Comput Eng Appl, 52(23), 50-54.

    [21]    Peng, X., & Selvachandran, G. (2019). Pythagorean fuzzy set: state of the art and future directions. Artificial Intelligence Review, 52, 1873-1927.

    [22]    Yager, R. R. (2013, June). Pythagorean fuzzy subsets. In 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS) (pp. 57-61). IEEE.

    [23]    Yager, R. R., & Abbasov, A. M. (2013). Pythagorean membership grades, complex numbers, and decision making. International Journal of Intelligent Systems, 28(5), 436-452.

    [24]    Zhang, X., & Xu, Z. (2014). Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. International journal of intelligent systems, 29(12), 1061-1078.

    [25]    Garg, H. (2016). A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. International Journal of Intelligent Systems, 31(9), 886-920.

    [26]    Garg, H. (2016). A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decision‐making processes. International Journal of Intelligent Systems, 31(12), 1234-1252.

    [27]    Majumdar, P., & Samanta, S. K. (2010). Generalised fuzzy soft sets. Computers & Mathematics with Applications, 59(4), 1425-1432.

    [28]    Baesho, M. (2010). Generalised intuitionistic fuzzy soft sets,‖ MSc Research Project. Universiti Kebangsaan Malaysia.

    [29]    Alkhazaleh, S., Salleh, A. R., & Hassan, N. (2011). Possibility fuzzy soft set. Advances in Decision Sciences, 2011.

    [30]    Bashir, M., Salleh, A. R., & Alkhazaleh, S. (2012). Possibility intuitionistic fuzzy soft set. Advances in Decision Sciences, 2012.

    [31]    Senapati, T., & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of Ambient Intelligence and Humanized Computing, 11, 663-674.

    [32]    Sivadas, A., & John, S. J. (2021). Fermatean fuzzy soft sets and its applications. In Computational Sciences-Modelling, Computing and Soft Computing: First International Conference, CSMCS 2020, Kozhikode, Kerala, India, September 10-12, 2020, Revised Selected Papers 1 (pp. 203-216). Springer Singapore.

    [33]    Ahmed, D., Dai, B., & Mostafa Khalil, A. (2023). Possibility Fermatean fuzzy soft set and its application in decision-making. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-10.

    Cite This Article As :
    Alkhazaleh, Shawkat. , Al-khateeb, Areen. , Zureigat, Hamzeh. , Batiha, Belal. , Almarashdeh, Rawan. Intuitionistic Possibility Fermatean Fuzzy Soft Sets. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 131-146. DOI: https://doi.org/10.54216/IJNS.240212
    Alkhazaleh, S. Al-khateeb, A. Zureigat, H. Batiha, B. Almarashdeh, R. (2024). Intuitionistic Possibility Fermatean Fuzzy Soft Sets. International Journal of Neutrosophic Science, (), 131-146. DOI: https://doi.org/10.54216/IJNS.240212
    Alkhazaleh, Shawkat. Al-khateeb, Areen. Zureigat, Hamzeh. Batiha, Belal. Almarashdeh, Rawan. Intuitionistic Possibility Fermatean Fuzzy Soft Sets. International Journal of Neutrosophic Science , no. (2024): 131-146. DOI: https://doi.org/10.54216/IJNS.240212
    Alkhazaleh, S. , Al-khateeb, A. , Zureigat, H. , Batiha, B. , Almarashdeh, R. (2024) . Intuitionistic Possibility Fermatean Fuzzy Soft Sets. International Journal of Neutrosophic Science , () , 131-146 . DOI: https://doi.org/10.54216/IJNS.240212
    Alkhazaleh S. , Al-khateeb A. , Zureigat H. , Batiha B. , Almarashdeh R. [2024]. Intuitionistic Possibility Fermatean Fuzzy Soft Sets. International Journal of Neutrosophic Science. (): 131-146. DOI: https://doi.org/10.54216/IJNS.240212
    Alkhazaleh, S. Al-khateeb, A. Zureigat, H. Batiha, B. Almarashdeh, R. "Intuitionistic Possibility Fermatean Fuzzy Soft Sets," International Journal of Neutrosophic Science, vol. , no. , pp. 131-146, 2024. DOI: https://doi.org/10.54216/IJNS.240212