Volume 23 , Issue 2 , PP: 286-295, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
M. Anandhkumar 1 * , T. Harikrishnan 2 , S. M. Chithra 3 , V. Kamalakannan 4 , B. Kanimozhi 5
Doi: https://doi.org/10.54216/IJNS.230223
In this article, First, we study the different orderings for k-idempotent Neutrosophic fuzzy matrices (NFM). With this idea, we also discover some properties for the k- Neutrosophic fuzzy matrices and demonstrate the connection between the generalized inverse and different orderings. We also go through some properties for the T-ordering, T- reverse ordering, minus, and space ordering in k-idempotent Neutrosophic fuzzy matrices using the g-inverses with numerical examples is given. Minus ordering is a partial ordering in the set of all regular fuzzy matrices. We have introduced ordering on k− idempotent fuzzy matrices and developed the theory of fuzzy matrix partial ordering. The minus ordering and k−space ordering are identical for k− idempotent matrices. Next, we introduce and study the concept of k–Idempotent Neutrosophic fuzzy matrix as a generalization of idempotent NFM via permutations. It is shown that a kidempotent NFM reduces to an idempotent NFM if and only if PK = KP. The Conditions for power symmetric NFM to be k-idempotent are derived and some related results are given.
k&minus , idempotent NFM , T&minus , ordering , minus ordering , space ordering and inverses , Idempotent NFM , permutation IFM , k-symmetric NFM.
[1] Zadeh L.A., Fuzzy Sets, Information and control.,(1965),,8, pp. 338-353.
[2] Atanassov K., , Intuitionistic Fuzzy Sets, Fuzzy Sets and System. (1983), 20, pp. 87- 96.
[3] Smarandache,F, Neutrosophic set, a generalization of the intuitionistic fuzzy set. Int J Pure Appl Math., (2005),.24(3):287–297.
[4] Ben Isral A., Greville, T.N.E., Generalized Inverse Theory and Application, (1974) ,John Willey, New York.
[5] Kim K. H., Roush, F.W., Generalized fuzzy matrices, Fuzzy Sets and Systems. (1980), 4(3), pp. 293–315.
[6] M. Anandhkumar. V.Kamalakannan,S.M.Chitra, and Said Broumi, Pseudo Similarity of Neutrosophic Fuzzy matrices, International Journal of Neutrosophic Science, Vol. 20, No. 04, PP. 191-196, 2023 .
[7]M.Anandhkumar.B.Kanimozhi,V.Kamalakannan,S.M.Chitra, and Said Broumi, On various Inverse of Neutrosophic Fuzzy Matrices, International Journal of Neutrosophic Science, Vol. 21, No. 02, PP. 20-31, 2023.
[8] M. Anandhkumar ,T. Harikrishnan, S. M. Chithra , V. Kamalakannan , B. Kanimozhi , Broumi Said ,Reverse Sharp and Left-T Right-T Partial Ordering on Neutrosophic Fuzzy Matrices, International Journal of Neutrosophic Science, Vol. 21, No. 04, PP. 135-145, 2023.
[9] M.G. Thomason, Convergence of posets of a fuzzy matrix , Journal of Mathl.Anal. Appl., 57 (1977), 3 - 15.
[10] Jian Miao Chen Fuzzy matrix partial orderings and generalized inverses, Fuzzy sets sys 105 , (1982), 453 – 458.
[11] Mitra, S.K., Bhimasankaram, P., Malik, S.B. (2010). Matrix partial orders, shorted operators and applications. World Scientific.
[12] Meenakshi.A.R., Fuzzy matrix – Theory and its applications , MJP Publishers (2008).
[13] K. Muthugurupackiam and K.S.Krishnamohan, Generalisation of Idempotent fuzzy matrices, International Journal of Applied Engineering Research, 13(13) (2018), 11087–11090.
[14] K. Muthugurupackiam and K.S.Krishnamohan, Some inverses on Generalised idempotent fuzzy matrices, Journal of Applied Science and Computations, 6(2), (2019), 249-254.
[15] K.Muthu Guru Packiam and K.S.Krishna Mohan Partial orderings on k−idempotent fuzzy matrices Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 15, Number 5 (2019), pp. 733-741.
[16]M.Anandhkumar; G.Punithavalli; T.Soupramanien; Said Broumi, Generalized Symmetric Neutrosophic Fuzzy Matrices, Neutrosophic Sets and Systems, Vol. 57,2023, 57, pp. 114–127.