International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 23 , Issue 1 , PP: 85-96, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Neutrosophic Structure of the Log-logistic Model with Applications to Medical Data

Hassabelrasul Y. A. Shihabeldeen 1 * , Zahid Khan 2

  • 1 Department of Business Administration, College of Sciences and the Human Sciences in Al Aflaj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia - (h.shihabeldeen@psau.edu.sa)
  • 2 Department of Quantitative Methods, Pannon Egyetem, Veszprem, H-8200, Hungary - (khan.zahid@gtk.uni-pannon.hu)
  • Doi: https://doi.org/10.54216/IJNS.230107

    Received: October 05, 2023 Revised: November 01, 2023 Accepted: November 11, 2023
    Abstract

    In practical scenarios, it is common to encounter fuzzy data that contains numerous imprecise observations. The uncertainty associated with this type of data often leads to the use of interval statistical measures and the proposal of neutrosophic versions of probability distributions to better handle such data. This study introduces a new generalized design of the log-logistic distribution within a neutrosophic framework, building upon encouraging applications of this distribution in fields such as economics, engineering, survival analysis, and lifetime modeling. The proposed neutrosophic log-logistic distribution (NLLD) is analyzed in terms of statistical properties, including moments, shape coefficients, and various survival characteristics. To evaluate the performance of the predicted neutrosophic parameters, an estimation procedure is conducted. Finally, the practical application of the proposed model is demonstrated using a sample dataset consisting of 128 bladder cancer patients.

    Keywords :

    Neutrosophic probability , uncertain data , estimation , log-logistic model

    References

     

    [1]        Alizadeh, M., MirMostafee, S. M. T. K., Ortega, E. M., Ramires, T. G., & Cordeiro, G. M. The odd log-logistic logarithmic generated family of distributions with applications in different areas. Journal of Statistical Distributions and Applications, 4(1), 1-25, 2017.

    [2]        Lima, S. R., & Cordeiro, G. M. The extended log-logistic distribution: properties and application. Anais da Academia Brasileira de Ciências, 89, 03-17, 2017.

    [3]        Johnson, N. L., & Kotz, S. Continuous univariate distributions, John Wiley & Sons, 1994.

    [4]        Verhulst, P. F. Notice on the law that the population follows in its growth, Correspondence Mathematica et Physica, 10, 113-26, 1838.

    [5]        Gupta, R. C., Akman, O., & Lvin, S. A study of logā€logistic model in survival analysis. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 41(4), 431-443, 1999.

    [6]        Fisk, P. R. The graduation of income distributions. Econometrica: Journal of the Econometric Society, 171-185, 1961.

    [7]        Gafurov Ubaydullo,Ismoilov Narimonjon, Utilizing logistics Information Management System in logistic companies, Financial Technology and Innovation, Vol. 2 , No. 1 , (2023) : 19-25 (Doi   :  https://doi.org/10.54216/FinTech-I.020102)

    [8]        Al-Shomrani, A. A., Shawky, A. I., Arif, O. H., & Aslam, M. Log-logistic distribution for survival data analysis using MCMC. SpringerPlus, 5(1), 1-16, 2016.

    [9]        Ragab, A., & Green, J. On order statistics from the log-logistic distribution and their properties. Communications in Statistics-Theory and Methods, 13(21), 2713-2724, 1984.

    [10]      Kantam, R. R. L., Srinivasa Rao, G., & Sriram, B. An economic reliability test plan: log-logistic distribution. Journal of Applied Statistics, 33(3), 291-296, 2006.

    [11]      Kantam, R. R. L., & Srinivasa Rao, G. Log-logistic distribution: modified maximum likelihood estimation. Gujarat Statistical Review, 29(1), 25-36, 2002.

    [12]      Smarandache, F. Neutrosophic set-a generalization of the intuitionistic fuzzy set. International Journal of Pure and Applied Mathematics, 24(3), 287, 2005.

    [13]      Smarandache, F. A unifying field in logics. neutrosophy: Neutrosophic probability, set and logic, 1999.

    [14]      Morán, J. C. S., Chuga, J. F. E., & Arias, W. M. Neutrosophic statistics applied to the analysis of socially responsible participation in the community. Neutrosophic Sets and Systems, Book Series, 26, 18, 2019.

    [15]      Chen, J., Ye, J., Du, S., & Yong, R. Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry, 9(7), 123, 2017.

    [16]      Khan, Z., Gulistan, M., Kausar, N., & Park, C. Neutrosophic Rayleigh model with some basic characteristics and engineering applications. IEEE Access, 9, 71277-71283, 2021.

    [17]      Broumi, S., Sundareswaran, R., Shanmugapriya, M. ., Nordo, G., Talea, M. ., Bakali, A., and Smarandache, F. Interval- valued fermatean neutrosophic graphs, Decision Making: Applications in Management and Engineering, Collected Papers, 5(2), 176–200, 2022. https://doi.org/10.31181/dmame0311072022b

    [18]      Raaid Alubady, Rawan A.shlaka, Hussein Alaa Diame, Sarah Ali Abdulkareem, Ragheed Hussam, Sahar Yassine, Venkatesan Rajinikanth,  Blockchain-based e-Medical Record and Data Security Service Management based on IoMT resource,  Journal of Intelligent Systems and Internet of Things,  Vol. 8 ,  No. 2 ,  (2023) : 86-100 (Doi   :  https://doi.org/10.54216/JISIoT.080207)

    [19]      Broumi, S., Sundareswaran, R., Shanmugapriya, M., Bakali, A., & Talea, M. Theory and Applications of Fermatean Neutrosophic Graphs. Neutrosophic Sets and Systems, 50, 248-286. 2022.

    [20]      Giorgio Nordo,Arif Mehmood,Said Broumi, Single Valued Neutrosophic Filters, International Journal of Neutrosophic Science, Vol. 6 , No. 1 , (2020) : 08-21 (Doi   :  https://doi.org/10.54216/IJNS.060101)

    [21]      Khan, Z., Gulistan, M., Chammam, W., Kadry, S., & Nam, Y. A new dispersion control chart for handling neutrosophic data. IEEE Access, 8, 96006-96015, 2020.

    [22]      Khan, Z., Gulistan, M., Hashim, R., Yaqoob, N., & Chammam, W. Design of S-control chart for neutrosophic data: An application to the manufacturing industry. Journal of Intelligent & Fuzzy Systems, 38(4), 4743-4751, 2020.

    [23]      Duan, W. Q., Khan, Z., Gulistan, M., & Khurshid, A. Neutrosophic exponential distribution: Modeling and applications for complex data analysis. Complexity, 2021.

    [24]      Smarandache, F. A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability. Infinite Study, 2005.

    [25]      Aslam, M. A new sampling plan using neutrosophic process loss consideration. Symmetry, 10(5), 132, 2018.

    [26]      Hanafy, I. M., Salama, A. A., & Mahfouz, K. Correlation of neutrosophic Data. International Refereed Journal of Engineering and Science (IRJES), 1(2), 39-43, 2012.

    [27]      Lee, E. T., & Wang, J. Statistical methods for survival data analysis (Vol. 476). John Wiley & Sons, 2003.

    [28]      Khan, Z., Gulistan, M., Hashim, R., Yaqoob, N., & Chammam, W. Design of S-control chart for neutrosophic data: An application to manufacturing industry. Journal of Intelligent & Fuzzy Systems, 38(4), 4743–4751, 2020.

    Cite This Article As :
    Y., Hassabelrasul. , Khan, Zahid. Neutrosophic Structure of the Log-logistic Model with Applications to Medical Data. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 85-96. DOI: https://doi.org/10.54216/IJNS.230107
    Y., H. Khan, Z. (2023). Neutrosophic Structure of the Log-logistic Model with Applications to Medical Data. International Journal of Neutrosophic Science, (), 85-96. DOI: https://doi.org/10.54216/IJNS.230107
    Y., Hassabelrasul. Khan, Zahid. Neutrosophic Structure of the Log-logistic Model with Applications to Medical Data. International Journal of Neutrosophic Science , no. (2023): 85-96. DOI: https://doi.org/10.54216/IJNS.230107
    Y., H. , Khan, Z. (2023) . Neutrosophic Structure of the Log-logistic Model with Applications to Medical Data. International Journal of Neutrosophic Science , () , 85-96 . DOI: https://doi.org/10.54216/IJNS.230107
    Y. H. , Khan Z. [2023]. Neutrosophic Structure of the Log-logistic Model with Applications to Medical Data. International Journal of Neutrosophic Science. (): 85-96. DOI: https://doi.org/10.54216/IJNS.230107
    Y., H. Khan, Z. "Neutrosophic Structure of the Log-logistic Model with Applications to Medical Data," International Journal of Neutrosophic Science, vol. , no. , pp. 85-96, 2023. DOI: https://doi.org/10.54216/IJNS.230107