International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 23 , Issue 1 , PP: 08-16, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Neutrosophic Integrals by Reduction Formula and Partial Fraction Methods for Indefinite Integrals

A. Manshath 1 * , E. Kungumaraj 2 , E. Lathanayagam 3 , M. C. Joe Anand 4 , Nivetha Martin 5 , Elangovan Muniyandy 6 , S. Indrakumar 7

  • 1 Department of Mathematics & Acturial Science, B.S.Abdur Rahman Crescent Institute of Science and Technology, Kanchipuram-600048, Tamil Nadu, India - (ameer.manshath@gmail.com)
  • 2 Sakthi Institute of Information and Management Studies, Pollachi, Coimbatore, Tamil Nadu - 642001, India - (kungum99522@gmail.com)
  • 3 Akshaya College of Engineering and Technology, Kinathukadavu, Coimbatore, Tamil Nadu - 642109, India - (lathashrilishanth@gmail.com)
  • 4 Department of Mathematics, Mount Carmel College (Autonomous), Affiliated to Bengaluru City University, Bengaluru - 560052, Karnataka, India - (arjoemi@gmail.com)
  • 5 Department of Mathematics, Arul Anandar College, Karumathur-625514, Tamil Nadu, India - (nivetha.martin710@gmail.com)
  • 6 Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai- 602105, Tamil Nadu, India. - (muniyandy.e@gmail.com)
  • 7 Department of Computer Technology (UG), Kongu Engineering College, Erodu-638052, Tamil Nadu, India - (indrakumar.maths@kongu.edu)
  • Doi: https://doi.org/10.54216/IJNS.230101

    Received: May 22, 2023 Revised: August 12, 2023 Accepted: November 02, 2023
    Abstract

    Neutrosophic mathematics is a branch of mathematics that deals with ambiguity, indeterminacy, and incompleteness in mathematical objects and procedures. To account for Neutrosophic uncertainty, several mathematical concepts—including the reduction formula, partial fractions, and area finding—are extended in this field. The Neutrosophic reduction formula is a technique for summarising simpler words from a complex mathematical expression when the coefficientss a nd/or values may be ambiguous or unknown. By taking the potential of insufficient information into account, expands the traditional reduction formula. A rational function can be broken down using the Neutrosophic partial fraction into several simpler expressions, where the coefficients and/or values may be ambiguous or unknown. By considering, this expands the traditional partial fraction. The potential for inaccurate information. A method for calculating the area under a curve where the curve's form or position may be unknown or ambiguous is area finding via neutrosophic integration. By considering the potential of having insufficient information, this expands the traditional area of searching. These ideas can be used in fields like decision-making, expert systems, and artificial intelligence and are crucial for handling problems in the real world that entail uncertainty, indeterminacy, and incompleteness.

    Keywords :

    Definite neutrosophic integral , Area of neutrosophic curves , length of neutrosophic volumes of neutrosophic revolution , Indeterminacy in integrals.

    References

               [1 ]Abdel-Basset. M., "An approach of TOPSIS technique for developing supplier selection with groupdecision making under type-2 neutrosophic number", Applied Soft Computing, pp.438-452, 2019.

               [2 ] Abdel-Baset. M., Chang, V., Gamal, A., Smarandache. F., "An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field", Comput. Ind, pp.94–110,2019.

               [3 ] Alhasan. Y. "Concepts of Neutrosophic Complex Numbers", International Journal of Neutrosophic Science, Volume 8 , Issue 1, pp. 9-18, 2020.

               [4 ] Alhasan. Y., "The General Exponential form of a Neutrosophic Complex Number", International Journal of Neutrosophic Science, Volume 11, Issue 2, pp. 100-107, 2020.

               [5 ] Al-Tahan. M., "Some Results on Single Valued Neutrosophic (Weak) Polygroups", International Journal of Neutrosophic Science, Volume 2, Issue 1, pp. 38-46, 2020.

               [6 ]Smarandache. F., "Neutrosophy / Neutrosophic Probability, Set, and Logic, American Research Press", Rehoboth, USA, 1998.

               [7 ]Smarandache. F., "A Unifying Field in Logics: Neutrosophic Logic", Preface by Charles Le, American Research Press, Rehoboth, 1999, 2000. Second edition of the Proceedings of the First International Conference on Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability and Statistics, University ofNew Mexico, Gallup, 2001.

               [8 ] Smarandache. F., "Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy",Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA 2002.

               [9 ] Smarandache. F., "Proceedings of the First International Conference on Neutrosophy", Neutrosophic Set, Neutrosophic Probability and Statistics, University of New Mexico, 2001.

             [10 ] Smarandache, F., "Finite Neutrosophic Complex Numbers, by W. B. Vasantha Kandasamy", Zip Publisher, Columbus, Ohio, USA, pp.1-16, 2011.

             [11 ] Smarandache. F., "Introduction to Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic Probability", Sitech-Education Publisher, Craiova – Columbus, 2013.

             [12 ] Smarandache. F., "Introduction to Neutrosophic statistics", Sitech-Education Publisher, pp.34-44, 2014.

             [13 ] Smarandache. F., "Neutrosophic Precalculus and Neutrosophic Calculus", book, 2015.

             [14 ]Yaser Ahmad Alhasan., The Neutrosophic integrals and integration methods, Neutrosophic Sets and Systems, Vol.43, pp.290 – 301, 2021.

             [15 ] Yaser Ahmad Alhasan., The Neutrosophic integrals by parts, Neutrosophic Sets and Systems, Vol.45, pp.306 – 319., 2021.

             [16 ] Yaser Ahmad Alhasan., The definite Neutrosophic integrals and its applications, Neutrosophic Sets and Systems, Vol.49, pp.277,2021

             [17 ]Broumi, S., Sundareswaran, R., Shanmugapriya, M., Bakali, A., & Talea, M.,Theory and Applications of Fermatean Neutrosophic Graphs. Neutrosophic Sets and Systems, Vol.50, pp.248-286, 2022

             [18 ]Broumi, S., Mohanaselvi, S., Witczak, T., Talea, M., Bakali, A., & Smarandache, F., Complex fermatean neutrosophic graph and application to decision making. Decision Making: Applications in Management and Engineering, Vol.6(1), pp.474-501, 2023.

             [19 ]Broumi, S., Sundareswaran, R., Shanmugapriya, M., Singh, P. K., Voskoglou, M., & Talea, M., Faculty Performance Evaluation through Multi-Criteria Decision Analysis Using Interval-Valued Fermatean Neutrosophic Sets. Mathematics, Vol.11(18), pp.3817, 2023.

       [20 ]P. Reena Joice,M. Trinita Pricilla,S. Broumi, Generalized Pre-closed Sets in Fermatean Neutrosophic Hypersoft Topological Spaces, International Journal of Neutrosophic Science, Vol. 20 , No. 3 , (2023) : 82-97 (Doi   :  https://doi.org/10.54216/IJNS.200308).

      [21 ]Florentin Smarandache, New Types of Soft Sets: HyperSoft Set, IndetermSoft Set, IndetermHyperSoft Set, and TreeSoft Set, International Journal of Neutrosophic Science, Vol. 20 , No. 4 , (2023) : 58-64 (Doi   :  https://doi.org/10.54216/IJNS.200404)         

             [22 ]Broumi, S., Raut, P. K., & Behera, S. P., Solving shortest path problems using an ant colony algorithm with triangular neutrosophic arc weights. International Journal of Neutrosophic Science, Vol. 20(4),pp. 128-28, 2023

    Cite This Article As :
    Manshath, A.. , Kungumaraj, E.. , Lathanayagam, E.. , C., M.. , Martin, Nivetha. , Muniyandy, Elangovan. , Indrakumar, S.. Neutrosophic Integrals by Reduction Formula and Partial Fraction Methods for Indefinite Integrals. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 08-16. DOI: https://doi.org/10.54216/IJNS.230101
    Manshath, A. Kungumaraj, E. Lathanayagam, E. C., M. Martin, N. Muniyandy, E. Indrakumar, S. (2024). Neutrosophic Integrals by Reduction Formula and Partial Fraction Methods for Indefinite Integrals. International Journal of Neutrosophic Science, (), 08-16. DOI: https://doi.org/10.54216/IJNS.230101
    Manshath, A.. Kungumaraj, E.. Lathanayagam, E.. C., M.. Martin, Nivetha. Muniyandy, Elangovan. Indrakumar, S.. Neutrosophic Integrals by Reduction Formula and Partial Fraction Methods for Indefinite Integrals. International Journal of Neutrosophic Science , no. (2024): 08-16. DOI: https://doi.org/10.54216/IJNS.230101
    Manshath, A. , Kungumaraj, E. , Lathanayagam, E. , C., M. , Martin, N. , Muniyandy, E. , Indrakumar, S. (2024) . Neutrosophic Integrals by Reduction Formula and Partial Fraction Methods for Indefinite Integrals. International Journal of Neutrosophic Science , () , 08-16 . DOI: https://doi.org/10.54216/IJNS.230101
    Manshath A. , Kungumaraj E. , Lathanayagam E. , C. M. , Martin N. , Muniyandy E. , Indrakumar S. [2024]. Neutrosophic Integrals by Reduction Formula and Partial Fraction Methods for Indefinite Integrals. International Journal of Neutrosophic Science. (): 08-16. DOI: https://doi.org/10.54216/IJNS.230101
    Manshath, A. Kungumaraj, E. Lathanayagam, E. C., M. Martin, N. Muniyandy, E. Indrakumar, S. "Neutrosophic Integrals by Reduction Formula and Partial Fraction Methods for Indefinite Integrals," International Journal of Neutrosophic Science, vol. , no. , pp. 08-16, 2024. DOI: https://doi.org/10.54216/IJNS.230101