International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 22 , Issue 4 , PP: 63-81, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Selection of neutral networks using q-rung neutrosophic vague soft set TOPSIS aggregating operator setting multi-criteria group decision making

A. Priya 1 * , P. Maragatha Meenakshi 2 , Aiyared Iampan 3 , N. Rajesh 4 , Suganthi Mariyappan 5

  • 1 Department of Mathematics, Government Arts College (affiliated to Bharathidasan University), Thanthonimalai, Karur 639005, Tamilnadu, India - (a.priya@gackarur.ac.in)
  • 2 Department of Mathematics, Thanthai Periyar Government Arts and Science College (affiliated to Bharathidasan University), Tiruchirappalli 624024, Tamilnadu, India - (maragathameenakship@gmail.com)
  • 3 Fuzzy Algebras and Decision-Making Problems Research Unit, School of Science, University of Phayao, 19 Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand - (aiyared.ia@up.ac.th)
  • 4 Department of Mathematics, Rajah Serfoji Government College, Thanjavur 613005, Tamilnadu, India - (nrajesh topology@yahoo.co.in)
  • 5 Department of Mathematics, Rajah Serfoji Government College, Thanjavur 613005, Tamilnadu, India - (sherin.sugan@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.220406

    Received: May 28, 2023 Revised: July 09, 2023 Accepted: November 01, 2023
    Abstract

    The q-rung neutrosophic vague soft set (q-rung NVSS) is a generalization of the neutrosophic vague soft set (NVSS) and the vague soft set (VSS). The TOPSIS aggregated operation (AO) was used to discuss the q-rung NVSS. As an extension of VSS, the TOPSIS method effectively makes multi-criteria group decision making (MCGDM). With a score function, the goal is to find a positive and negative ideal solution based on q-rung NVSS. Closeness values are determined by presenting optimal alternatives. We provide practical examples to support our conclusions. This results in the outcome of the models for which q is provided. Considering the validity and usefulness of the models under consideration can be achieved by comparing them with those that have been proposed. Recent discoveries have generated quite a bit of interest and fascination.

    Keywords :

    q-rung NVSS , MCGDM , TOPSIS , aggregation operator.

    References

    [1] T. M. Al-Shami, H. Z. Ibrahim, A. A. Azzam, and A. I. EL-Maghrabi, SR-fuzzy sets and their weighted aggregated operators in application to decision-making, Journal of Function Spaces, 2022, (2022), Article ID 3653225, 14 pages.

    [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), (1986), 87-96.

    [3] R. Biswas, Vague groups, International Journal of Computational Cognition, 4(2), (2006), 20-23.

    [4] S. Broumi, S. Krishna Prabha, and V. Uluc¸ay, Interval-valued Fermatean neutrosophic shortest path problem via score function, Neutrosophic Systems with Applications, 11, (2023), 1–10.

    [5] S. Broumi, S. Mohanaselvi, T. Witczak, M. Talea, A. Bakali, and F. Smarandache, Complex Fermatean neutrosophic graph and application to decision making, Decision Making: Applications in Management and Engineering, 6(1), (2023), 474-501.

    [6] S. Broumi, P. K. Raut, and S. P. Behera, Solving shortest path problems using an ant colony algorithm with triangular neutrosophic arc weights, International Journal of Neutrosophic Science, 20(4), (2023), 128-28.

    [7] S. Broumi, R. Sundareswaran, M. Shanmugapriya, A. Bakali, and M. Talea, Theory and applications of Fermatean neutrosophic graphs, Neutrosophic Sets and Systems, 50, (2022), 248-286.

    [8] S. Broumi, R. Sundareswaran, M. Shanmugapriya, P. K. Singh, M. Voskoglou, and M. Talea, Faculty performance evaluation through multi-criteria decision analysis using interval-valued Fermatean neutrosophic sets, Mathematics, 11(18), (2023), 3817.

    [9] B. C. Cuong and V. Kreinovich, Picture fuzzy sets a new concept for computational intelligence problems, Third world congress on information and communication technologies, WICT 2013, IEEE, 1-6.

    [10] P. A. Ejegwa, Distance and similarity measures for Pythagorean fuzzy sets, Granular Computing, 5, (2020), 225–238.

    [11] R. Jansi, K. Mohana, and F. Smarandache, Correlation measure for Pythagorean neutrosophic sets with T and F as dependent neutrosophic components, Neutrosophic Sets and Systems, 30, (2019), 202-212.

    [12] B. P. Joshi, A. Singh, P. K. Bhatt, and K. S. Vaisla, Interval valued q-rung orthopair fuzzy sets and their properties, Journal of Intelligent and Fuzzy Systems, 35, (2018), 5225-5230.

    [13] P. K. Maji, R. Biswas, and A. R. Roy, Fuzzy soft sets, Journal of Fuzzy Mathematics, 9(3), (2001), 589-602.

    [14] P. K. Maji, R. Biswas, and A. R. Roy, On intuitionistic fuzzy soft sets, Journal of Fuzzy Mathematics, 9(3), (2001), 677-692.

    [15] D. Molodtsov, Soft set theory-First results, Computers and Mathematics with Applications, 37(4-5), (1999), 19-31.

    [16] M. Palanikumar and K. Arulmozhi, MCGDM based on TOPSIS and VIKOR using Pythagorean neutrosophic soft with aggregation operators, Neutrosophic Sets and Systems, 51, (2022), 538-555.

    [17] M. Palanikumar, K. Arulmozhi, and A. Iampan, Multi criteria group decision making based on VIKOR and TOPSIS methods for Fermatean fuzzy soft with aggregation operators, ICIC Express Letters, 16(10), (2022), 1129-1138.

    [18] M. Palanikumar, K. Arulmozhi, A. Iampan, and S. Broumi, Medical diagnosis decision making using type-II generalized Pythagorean neutrosophic interval valued soft sets, International Journal of Neutrosophic Science, 20(1), (2023), 85-105.

    [19] M. Palanikumar, K. Arulmozhi, A. Iampan, and L. J. Manavalan, Novel possibility Pythagorean cubic fuzzy soft sets and their applications, International Journal of Innovative Computing, Information and Control, 19(2), (2023), 325-337.

    [20] M. Palanikumar and S. Broumi, Square root Diophantine neutrosophic normal interval-valued sets and their aggregated operators in application to multiple attribute decision making, International Journal of Neutrosophic Science, 19(3), (2022), 63-84.

    [21] M. Palanikumar, A. Iampan, S. Broumi, and G. Balaji, Generalization of neutrosophic interval-valued soft sets with different aggregating operators using multi-criteria group decision-making, International Journal of Neutrosophic Science, 22(1), (2023), 114-123.

    [22] M. Palanikumar, A. Iampan, S. Broumi, L. J. Manavalan, and K. Sundareswari, Multi-criteria group decision making method in Pythagorean interval-valued neutrosophic fuzzy soft soft using VIKOR approach, International Journal of Neutrosophic Science, 22(1), (2023), 104-113.

    [23] M. Palanikumar, N. Kausar, H. Garg, A. Iampan, S. Kadry, and M. Sharaf, Medical robotic engineering selection based on square root neutrosophic normal interval-valued sets and their aggregated operators, AIMS Mathematics, 8(8), (2023), 17402-17432.

    [24] X. Peng and Y. Yang, Fundamental properties of interval valued Pythagorean fuzzy aggregation operators, International Journal of Intelligent Systems, 31(5), (2016), 444-487.

    [25] F. Smarandache, A unifying field in logics, Neutrosophy neutrosophic probability, set and logic, American Research Press, Rehoboth, 1999.

    [26] R. R. Yager, Generalized orthopair fuzzy sets, IEEE Transactions on Fuzzy Systems, 25(5), (2016), 1222-1230.

    [27] R. R. Yager, Pythagorean membership grades in multi criteria decision making, IEEE Trans. Fuzzy Systems, 22, (2014), 958-965.

    [28] L. A. Zadeh, Fuzzy sets, Information and control, 8(3), (1965), 338-353.

    Cite This Article As :
    Priya, A.. , Maragatha, P.. , Iampan, Aiyared. , Rajesh, N.. , Mariyappan, Suganthi. Selection of neutral networks using q-rung neutrosophic vague soft set TOPSIS aggregating operator setting multi-criteria group decision making. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 63-81. DOI: https://doi.org/10.54216/IJNS.220406
    Priya, A. Maragatha, P. Iampan, A. Rajesh, N. Mariyappan, S. (2023). Selection of neutral networks using q-rung neutrosophic vague soft set TOPSIS aggregating operator setting multi-criteria group decision making. International Journal of Neutrosophic Science, (), 63-81. DOI: https://doi.org/10.54216/IJNS.220406
    Priya, A.. Maragatha, P.. Iampan, Aiyared. Rajesh, N.. Mariyappan, Suganthi. Selection of neutral networks using q-rung neutrosophic vague soft set TOPSIS aggregating operator setting multi-criteria group decision making. International Journal of Neutrosophic Science , no. (2023): 63-81. DOI: https://doi.org/10.54216/IJNS.220406
    Priya, A. , Maragatha, P. , Iampan, A. , Rajesh, N. , Mariyappan, S. (2023) . Selection of neutral networks using q-rung neutrosophic vague soft set TOPSIS aggregating operator setting multi-criteria group decision making. International Journal of Neutrosophic Science , () , 63-81 . DOI: https://doi.org/10.54216/IJNS.220406
    Priya A. , Maragatha P. , Iampan A. , Rajesh N. , Mariyappan S. [2023]. Selection of neutral networks using q-rung neutrosophic vague soft set TOPSIS aggregating operator setting multi-criteria group decision making. International Journal of Neutrosophic Science. (): 63-81. DOI: https://doi.org/10.54216/IJNS.220406
    Priya, A. Maragatha, P. Iampan, A. Rajesh, N. Mariyappan, S. "Selection of neutral networks using q-rung neutrosophic vague soft set TOPSIS aggregating operator setting multi-criteria group decision making," International Journal of Neutrosophic Science, vol. , no. , pp. 63-81, 2023. DOI: https://doi.org/10.54216/IJNS.220406