Volume 20 , Issue 4 , PP: 191-196, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
M. Anandhkumar 1 * , V. Kamalakannan 2 , S. M. Chithra 3 , Broumi Said 4
Doi: https://doi.org/10.54216/IJNS.200415
In this paper, first we shall define Pseudo Similarity for Neutrosophic Fuzzy Matrices and prove that Pseudo Similarity relation on pair of Neutrosophic Fuzzy Matrices. Also, we derive some relation between Pseudo Similarity and Idempotent matrices. Finally, we give in varies inverse of Neutrosophic Fuzzy Matrices.
Neutrosophic Fuzzy Matrices (NFMs) , G &ndash , inverse , Idempotent NFMs , Pseudo Similarity NFMs.
[1] Zadeh L.A., Fuzzy Sets, Information and control., 8, pp. 338-353 ,1965.
[2] Thomson M.G, Convergence of powers of a fuzzy matrix, Journal of Mathematical Analysis and Appilcations 57(1977) 476 – 480.
[3] Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, Vol.20, 87 – 96 (1986).
[4] Pradhan R and Pal M, Some Results on Generalized Inverse of Intuitionistic Fuzzy Matrices, ISSN 1616- 8658 (2014).
[5] Pradhan R and Pal M, Convergence of max arithmetic mean – min arithmetic mean powers of intuitionistic fuzzy matrices, International Journal Fuzzy Mathematical Archive 2 (2013) 58-69.
[6] Shymal S.K, Pal M, Interval – valued fuzzy matrices, The Journal of Fuzzy Mathematics and 14(3) (2006) 584 – 604.
[7] Bhowmik M, Pal M,Generalized Intuitionistic Fuzzy Matrices, Far - East Journal of Mathematics 14(3) (2006) 583 – 604.
[8] Meenakshi AR and Inbam, The Minus Partial Order in Fuzzy Matrices, The Journal of Fuzzy Mathematics. Vol.12, No. 3, 695-700(2004).
[9] Sriram S and Murugadas P,The Moore – Penrose Inverse of Intuitionistic Fuzzy Matrices. Int. Journal of Math. Analysis, vol.4, 2010, no.36, 1779 – 1786.
[10] Smarandache F (2005), “Neutrosophic set – a generalization of the intuitionistic fuzzy sets”, International Journal of Pure and Applied Mathematics, 24, 287-297.
[11] Uma R , Murugadas P and Sriram S, Generalized Inverse of Fuzzy Neutrosophic Soft Matrices, Joournal of Linear and Topogical Alebra, vol. 06, No. 02, 2017, 109 – 123.