International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 20 , Issue 1 , PP: 128-149, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Neutrosophic MCDM Approach for Performance Evaluation and Recommendation of Best Players in Sports League

Khalid Anwar 1 * , Aasim Zafar 2 , Arshad Iqbal 3

  • 1 Department of Computer Science, Aligarh Muslim University, Aligarh, India - (kanwar@myamu.ac.in)
  • 2 Department of Computer Science, Aligarh Muslim University, Aligarh, India - (azafar.cs@amu.ac.in)
  • 3 Department of Computer Science, Aligarh Muslim University, Aligarh, India; K.A. Nizami Centre for Quranic Studies, Aligarh Muslim University, Aligarh, India - (aiqbal.cqs@amu.ac.in)
  • Doi: https://doi.org/10.54216/IJNS.200111

    Received: June 18, 2022 Accepted: December 17, 2022
    Abstract

    In this era of the commercialization of sports, various sports leagues are organized across the globe. At the end of the Series, players are awarded for their performances. These awards are decided by human experts or are based on just one performance indicator. However, human decisions are subjective and error-prone, and decisions based on just one criterion are incomplete and inconsistent. This paper identifies the decision-making problem in sports. It proposes a Neutrosophic TOPSIS approach for performance evaluation and recommendation of the best batsman and bowler of the Series. The approach is well-structured, robust, and efficient in handling vagueness, inconsistency, indeterminacy, and imprecision in real-life problems. We present a case study using the data of IPL 2021. In the case study, we calculate the ranks of the players using neutrosophic TOPSIS with two objective weight calculation methods. Then we evaluate and compare the obtained rank lists using Kendal Tau (). The values of  for bowling-ranked lists is 0.83 and for batting-ranked lists is 0.72, which are impressive and prove the efficiency and effectiveness of the proposed approach. We believe that the proposed approach can be applied to identify and recommend the best resources in other domains of life.

    Keywords :

    Neutrosophic MCDM , Cricket , Performance Evaluation , TOPSIS , Player

    References

    [1]  Y.  Li,  L.  Wang,  and  F.  Li,  “A  data-driven  prediction  approach  for  sports  team  performance  and  its 

    application to National Basketball Association,” Omega (United Kingdom), vol. 98, no. xxxx, p. 102123, 

    2021, doi: 10.1016/j.omega.2019.102123.

    [2]  F. Smarandache, “α-Discounting Method for Multi-Criteria Decision Making (α-D MCDM),” 13th Conf. 

    Inf. Fusion, Fusion 2010, 2010, doi: 10.2139/ssrn.2725497.

    [3]  C.-L. Hwang and K. Yoon, “Methods for Multiple Attribute Decision Making,” pp. 58–191, 1981, doi: 

    10.1007/978-3-642-48318-9_3.

    [4]  Sara  Farooq  ,  Ali  Hamza  ,  Florentin  Smarandache,  Linear  and  Non-Linear  Decagonal  Neutrosophic 

    numbers: Alpha Cuts, Representation, and solution of large MCDM problems, International Journal of 

    Neutrosophic Science, Vol. 14 , No.1 , (2021) : 24-41

    [5]  S.  Ramalingam,  “Fuzzy  interval-valued  multi  criteria  based  decision  making  for  ranking  features  in 

    multi-modal  3D  face  recognition,”  Fuzzy  Sets  Syst.,  vol.  337,  pp.  25–51,  2018,  doi: 

    10.1016/j.fss.2017.06.002.

    [6]  L. A. Zadeh, I. Introduction, and U. S. Navy, “Fuzzy Sets * -,” Inf. Control, vol. 353, pp. 338–353, 1965.

    [7]  Marian  B.  GORZALCZANY,  “a  Method  of  Inference  in  Approximate  Reasoning  Based  on  IntervalValued Fuzzy Sets,” Fuzzy Sets Syst., vol. 21, pp. 1–17, 1987.

    [8]  K.  T.  Atanassov,  “Intuitionistic  fuzzy  sets,”  Int.  J.  Bioautomation,  vol.  20,  pp.  S1–S6,  2016,  doi: 

    10.1007/978-3-7908-1870-3_1.

    [9]  K.  T.  Atanassov,  “Interval  Valued  Intuitionistic  Fuzzy  Sets,”  pp. 139–177,  1999,  doi: 10.1007/978-3-7908-1870-3_2.

    [10]  Vicenc  Torra,  “Hesitant  fuzzy  Sets,”  Int.  J.  Intell.  Syst.,  vol.  29,  no.  2,  pp.  495–524,  2014,  [Online]. 

    Available: http://onlinelibrary.wiley.com/doi/10.1002/int.21631/full.

    [11]  W. L. Gau and D. J. Buehrer, “Vague Sets,” IEEE Trans. Syst. Man Cybern., vol. 23, no. 2, pp. 610–614, 

    1993, doi: 10.1109/21.229476.

    [12]  F.  Smarandache,  A  unifying  field  in  logics:  neutrosophic  logic,  neutrosophy,  neutrosophic  set, 

    neutrosophic  probability,  Fourth  edi.  ISBN  978-1-59973-080-6  American  Research  Press  Rehoboth, 

    2003.

    [13]  M.  A.  Wajid  and  A.  Zafar,  “Neutrosophic  Image  Segmentation:  An  Approach  for  the  Treatment  of 

    Uncertainty in Multimodal Information Systems,”  Int. J. Neutrosophic Sci., vol. 19, no. 1, pp. 217–230, 

    2022, doi: 10.54216/ijns.190117.

    [14]  H.  Wang,  F.  Smarandache,  R.  Sunderraman,  and  Y.-Q.  Zhang,  “Single  valued  neutrosophic  sets,” 

    Multisp. Multistructure, vol. 4, pp. 410–413, 2010.

    [15]  S. A. Hernandez, P. P. J. Mauricio, and L. V. Maikel, “Neutrosophic TOPSIS for prioritization Social 

    Responsibility  Projects,”  Int.  J.  Neutrosophic  Sci.,  vol.  19,  no.  1,  pp.  350–362,  2022,  doi: 

    10.54216/IJNS.190132.

    [16]  M. S. Bavia, D. Nagarajan, S. Broumi, J. Kavikumar, and A. Rajkumar, “Neutrosophic in Multi-Criteria 

    Decision Making for Location Selection,” Neutrosophic Sets Syst., vol. 48, pp. 142–153, 2022.

    [17]  E. K. Zavadskas, A. Mardani, Z. Turskis, A. Jusoh, and K. M. Nor,  Development of TOPSIS Method to 

    Solve Complicated Decision-Making Problems -  An Overview on Developments from 2000 to 2015, vol. 

    15, no. 3. 2016.

    [18]  M.  Şahin,  Location  selection  by  multi-criteria  decision-making  methods  based  on  objective  and 

    subjective weightings, vol. 63, no. 8. Springer London, 2021.

    [19]  D. Diakoulaki, G. Mavrotas, and L. Papayannakis, “Determining objective weights in multiple criteria 

    problems:  The  critic  method,”  Comput.  Oper.  Res.,  vol.  22,  no.  7,  pp.  763–770,  1995,  doi: 

    https://doi.org/10.1016/0305-0548(94)00059-H.

    [20]  Y.  Zhu,  D.  Tian,  and  F.  Yan,  “Effectiveness  of  Entropy Weight  Method  in  Decision-Making,”  Math. 

    Probl. Eng., vol. 2020, pp. 1–5, 2020, doi: 10.1155/2020/3564835.

    [21]  D. Valencia, R. E. Lillo, and J. Romo, “A Kendall correlation coefficient between functional data,” Adv. 

    Data Anal. Classif., vol. 13, no. 4, pp. 1083–1103, 2019, doi: 10.1007/s11634-019-00360-z.

    [22]  X.  Schelling  and  S.  Robertson,  “A  development  framework  for  decision  support  systems  in  highperformance sport,”  Int. J. Comput. Sci. Sport,  vol. 19, no. 1, pp. 1–23, 2020, doi: 10.2478/ijcss-2020-0001.

    [23]  S.  C.  Yücebaş,  “A  deep  learning  analysis  for  the  effect  of  individual  player  performances  on  match 

    results,” Neural Comput. Appl., vol. 5, pp. 12967–12984, 2022, doi: 10.1007/s00521-022-07178-5.

    [24]  M. Tavana, F. Azizi, F. Azizi, and M. Behzadian, “A fuzzy inference system with application to player 

    selection  and  team  formation  in  multi-player  sports,”  Sport  Manag.  Rev.,  vol.  16,  no.  1,  pp.  97–110, 

    2013, doi: 10.1016/j.smr.2012.06.002.

    [25]  S. B. Jayanth, A. Anthony, G. Abhilasha, N. Shaik, and G. Srinivasa, “A team recommendation system 

    and outcome prediction for the game of cricket,”  J. Sport. Anal., vol. 4, no. 4, pp. 263–273, 2018, doi: 

    10.3233/jsa-170196.

    [26]  A.  Oukil  and  S.  M.  Govindaluri,  “A  systematic  approach  for  ranking  football  players  within  an 

    integrated  DEA-OWA  framework,”  Manag.  Decis.  Econ.,  vol.  38,  no.  8,  pp.  1125–1136,  2017,  doi: 

    10.1002/mde.2851.

    [27]  J.  M.  Merigó  and  A.  M.  Gil-lafuente,  “Decision-making  in  sport  management  based  on  the  OWA 

    operator,” vol. 38, pp. 10408–10413, 2011, doi: 10.1016/j.eswa.2011.02.104.

    [28]  G. R. Amin and S. K. Sharma, “Measuring batting parameters in cricket: A two-stage regression-OWA 

    method,”  Meas.  J.  Int.  Meas.  Confed.,  vol.  53,  pp.  56–61,  2014,  doi: 

    10.1016/j.measurement.2014.03.029.

    [29]  K. Anwar, A. Zafar, A. Iqbal, and S. S. Sohail, “An OWA-Based Feature Extraction and Ranking for 

    Performance Evaluation of the Players in Cricket,”  Lect. Notes Data Eng. Commun. Technol., vol. 106, 

    pp. 169–179, 2022, doi: 10.1007/978-981-16-8403-6_15.

    [30]  F.  Ahmed,  K.  Deb,  and  A.  Jindal,  “Multi-objective  optimization  and  decision  making  approaches  to 

    cricket  team  selection,”  Appl.  Soft  Comput.  J.,  vol.  13,  no.  1,  pp.  402–414,  2013,  doi: 

    10.1016/j.asoc.2012.07.031.

    [31]  G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Comput. Electr. Eng., vol. 40, 

    no. 1, pp. 16–28, 2014, doi: 10.1016/j.compeleceng.2013.11.024.

    [32]  Madeleine Al-  Tahan, Some Results on Single Valued Neutrosophic (Weak) Polygroups, International 

    Journal of Neutrosophic Science, Vol. 2 , No. 1 , (2020) : 38-46

    [33]  S. Manochandar and M. Punniyamoorthy, “feature selection method for enhancing the classi fi cation 

    performance of Support Vector Machines in text mining,”  Comput. Ind. Eng., vol. 124, no. March, pp. 

    139–156, 2018, doi: 10.1016/j.cie.2018.07.008.

    [34]  S.  Agarwal,  L.  Yadav,  and  S.  Mehta,  “Cricket  Team  Prediction  with  Hadoop :  Statistical  Modeling 

    Approach,” Procedia Comput. Sci., vol. 122, pp. 525–532, 2017, doi: 10.1016/j.procs.2017.11.402.

    [35]  P.  Premkumar,  J.  B.  Chakrabarty,  and  S.  Chowdhury,  “Key  performance  indicators  for  factor  score 

    based ranking in One Day International cricket,” IIMB Manag. Rev., vol. 32, no. 1, pp. 85–95, 2020, doi: 

    10.1016/j.iimb.2019.07.008.

    [36]  A. K. Patel, P. J. Bracewell, A. J. Gazley, and B. P. Bracewell, “Identifying fast bowlers likely to play 

    test cricket based on age-group performances,”  Int. J. Sport. Sci. Coach., vol. 12, no. 3, pp. 328 –338,

    2017, doi: 10.1177/1747954117710514.

    [37]  W. Webber, A. Moffat, and J. Zobel, “A similarity measure for indefinite rankings,”  ACM Trans. Inf. 

    Syst., vol. 28, no. 4, 2010, doi: 10.1145/1852102.1852106.

    [38]  Necmiye  Merve  Sahin  ,  Merve  Sena  Uz,  Multi-criteria  Decision-making  Applications  Based  on  Set 

    Valued  Generalized  Neutrosophic  Quadruple  Sets  for  Law,  International  Journal  of  Neutrosophic 

    Science, Vol. 17 , No. 1 , (2021) : 41-60

    Cite This Article As :
    Anwar, Khalid. , Zafar, Aasim. , Iqbal, Arshad. Neutrosophic MCDM Approach for Performance Evaluation and Recommendation of Best Players in Sports League. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 128-149. DOI: https://doi.org/10.54216/IJNS.200111
    Anwar, K. Zafar, A. Iqbal, A. (2023). Neutrosophic MCDM Approach for Performance Evaluation and Recommendation of Best Players in Sports League. International Journal of Neutrosophic Science, (), 128-149. DOI: https://doi.org/10.54216/IJNS.200111
    Anwar, Khalid. Zafar, Aasim. Iqbal, Arshad. Neutrosophic MCDM Approach for Performance Evaluation and Recommendation of Best Players in Sports League. International Journal of Neutrosophic Science , no. (2023): 128-149. DOI: https://doi.org/10.54216/IJNS.200111
    Anwar, K. , Zafar, A. , Iqbal, A. (2023) . Neutrosophic MCDM Approach for Performance Evaluation and Recommendation of Best Players in Sports League. International Journal of Neutrosophic Science , () , 128-149 . DOI: https://doi.org/10.54216/IJNS.200111
    Anwar K. , Zafar A. , Iqbal A. [2023]. Neutrosophic MCDM Approach for Performance Evaluation and Recommendation of Best Players in Sports League. International Journal of Neutrosophic Science. (): 128-149. DOI: https://doi.org/10.54216/IJNS.200111
    Anwar, K. Zafar, A. Iqbal, A. "Neutrosophic MCDM Approach for Performance Evaluation and Recommendation of Best Players in Sports League," International Journal of Neutrosophic Science, vol. , no. , pp. 128-149, 2023. DOI: https://doi.org/10.54216/IJNS.200111