Volume 20 , Issue 1 , PP: 119-127, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
Kaviyarasu M. 1 * , Rajeshwari M. 2
Doi: https://doi.org/10.54216/IJNS.200110
In this paper, “we first define the belief of direct product from neutrosophic sets in INK algebras, neutrosophic set, neutrosophic h-ideals, neutrosophic INK-subalgebra and direct product of neutrosophic h-ideals in INK algebras. Let's prove some theorems that show that there is some connection between these principles. Finally, we define the INK subalgebra of the INK algebra and then offer the ideal theorem approximately the connection between its pix and the direct product from the neutrosophic h-ideals.
INK-algebra , the direct product of neutrosophic INK-sub algebra , direct product of neutrosophic h-ideal.
[1] Smarandache, Ƒ., Neutrosophic set a generalizations of the intuitionistic fuzzy sets. inter. J. Pure
Appl. Math., 24, 287 – 297, 2005.
[2] Atanassov, K. Intuitionistic Fuzzy sets. Fuzzy Sets and Systems, 1986, 20(1), 87-96.
[3] Jun, Y.B. Neutrosophic sub algebras of several Types in BCK/BCƖ-algebras. Annals of Fuzzy
Mathematics. information, 2017, 14(1), 75–86.
[4] Songsaeng, M.; Ɩampan, A. Neutrosophic Set Theory Applied to UP-Algebra. European Journal
of Pure and Applied Mathematics.. 2019, 12(4), 1382-1409.
[5] Jun, Y. B.; Smarandache, Ƒ.; Bordbar. H. Neutrosophic N-structures applied to BCK/BCƖ-algebras, intormation. 2017, 8(4),128.
[6] Jun, Y. B.; Smarandache, F.; Song, S-Z.; Khan, M. Neutrosophic positive implicative N-ideals in
BCK-algebras. Axioms, 2018, 7(1), 3.
[7] Zadeh, L. A. Fuzzy sets, information control. 1965, 8, 338-353.
[8] Ozturk, M. A.; Jun, Y. B. Neutrosophic ideals Ɩn BCK/BCƖ-algebras based on neutrosophic
poƖnƮs, Journal of the international Mathematical Virtual institute, 2018, 8, 1–17.
[9] Kaviyarasu, M.; Indhira, K.; Chandrasekaran, V.M. Fuzzy p-ideal in INK-algebra, Journal of XI'an
University of Architecture & Technology, 2018, 12 (3), 4746-4752.
[10] Kaviyarasu, M.; Indhira, K.; Chandrasekaran, V.M. Intuitionistic fuzzy translation on INK -Algebra,
Advances in Mathematics: Scientific Journal, 2020, 9 (1), 295–303.
[11] Kaviyarasu, M.; Indhira, K.; Chandrasekaran, V.M. Direct product of intuitionistic fuzzy INK-ideals of
ĮNK-algebras, Material Today: Proceedings, 2019, 16 (2), 449-455.
doĮ.org/10.1016/j.matpr.2019.05.114.
[12] Kaviyarasu, M.; Indhira, K.; Chandrasekaran, V.M. Neutrosophic set in INK-Algebra, Advances in
Mathematics: Scientific Journal, 2020, 9 (7), 4345-4352.
[13] Kaviyarasu, M.; Indhira, K.; Chandrasekaran, V.M. Fuzzy sub algebras and fuzzy INK-ideals in INKalgebras, International Journal of Pure and Applied Mathematics, 2017, 113(6), 47-55.
[14] Kaviyarasu, M; Indhira, K. Review on BCI/BCK-algebras and development, International Journal of
Pure and Applied Mathematics, 2017, 117(11), 377-383.
[15] Florentin Smarandache, NeutroAlgebra is a Generalization of Partial Algebra, International Journal of
Neutrosophic Science, Vol. 2, No. 1 , (2020) : 08-17
[16] Smarandache, F. Introduction to Neutro Algebraic Structures and Anti Algebraic Structures,
Neutrosophic Sets and Systems, 2020, 31, 1-16.
[17] Salama, A. A., Smarandache, F., & Kroumov, V., Neutrosophic crisp Sets & Neutrosophic crisp
Topological Spaces. Sets and Systems, 2(1), 25-30, 2014.
[18] iorgio Nordo , Arif Mehmood , Said Broumi, Single Valued Neutrosophic Filters, International Journal
of Neutrosophic Science, Vol. 6 , No. 1 , (2020) : 08-21
[19] R.Jayasudha. (2018). On intuitionistic fuzzy P-ideals and H-ideals in BCI-Algebras, International
Journal of Engineering Science Invention, 07(03), 56-62.