Volume 20 , Issue 1 , PP: 106-118, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
M. Palanikumar 1 * , K. Arulmozhi 2 , Aiyared Iampan 3 , Said Broumi 4
Doi: https://doi.org/10.54216/IJNS.200109
In this research article, we introduce the notions of interval valued Q-neutrosophic subbisemirings (IVQNSSBSs), level sets of an IVQNSSBS and interval valued Q-neutrosophic normal subbisemirings (IVQNSNSBSs) of bisemirings. Let Y ⃗ be an interval valued Q-neutrosophic set (IVQNS set) in a bisemiring 〆. Prove that Y ⃗ is an IVQNSSBS of S if and only if all nonempty level set Ξ(t,s) ⃗ is a subbisemiring (SBS) of S for t, s ∈ D[0, 1]. Let Y ⃗ be an IVQNSSBS of a bisemiring 〆 and V ⃗ be the strongest interval valued Qneutrosophic relation of 〆. Prove that Y ⃗ is an IVQNSSBS of S if and only if V ⃗ is an IVQNSSBS of 〆 × 〆. We illustrate homomorphic image of IVQNSSBS is an IVQNSSBS. Prove that homomorphic preimage of IVQNSSBS is an IVQNSSBS. Examples are given to demonstrate our findings.
interval valuedQ-neutrosophic subbisemiring , interval valuedQ-neutrosophic normal subbisemiring ,
subbisemiring , homomorphism.
[1] J. Ahsan, K. Saifullah, F. Khan, Fuzzy semirings, Fuzzy Sets and systems, vol. 60, pp. 309-320, 1993.
[2] M. Al-Tahan, B. Davvaz, M. Parimala, A note on single valued neutrosophic sets in ordered groupoids,
International Journal of Neutrosophic Science, vol. 10, no. 2, pp. 73-83, 2020.
[3] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications
in multi-attribute decision making problems, Journal of Intelligent and Fuzzy Systems, vol. 36, pp. 2829-
2844, 2019.
[4] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87-96, 1986.[5] B. C. Cuong, V. Kreinovich, Picture fuzzy sets a new concept for computational intelligence problems,
Proceedings of 2013 Third World Congress on Information and Communication Technologies (WICT
2013), IEEE, pp. 1-6, 2013.
[6] F. Hussian, R. M. Hashism, A. Khan, M. Naeem, Generalization of bisemirings, International Journal of
Computer Science and Information Security, vol. 14, no. 9, pp. 275-289, 2016.
[7] A. Iampan, P. Jayaraman, S. D. Sudha, N. Rajesh, Interval-valued neutrosophic ideals of Hilbert algebras,
International Journal of Neutrosophic Science, vol. 18, no. 4, pp. 223-237, 2022.
[8] A. Iampan, P. Jayaraman, S. D. Sudha, N. Rajesh, Interval-valued neutrosophic subalgebras of Hilbert
algebras, Asia Pacific Journal of Mathematics, vol. 9, Article no. 16, 2022.
[9] L. Jagadeeswari, V. J. Sudhakar, V. Navaneethakumar, S. Broumi, Certain kinds of bipolar interval valued
neutrosophic graphs, International Journal of Neutrosophic Science, vol. 16, no. 1, pp. 49-61, 2021.
[10] S. J. Golan, Semirings and their applications, Kluwer Academic Publishers, London, 1999.
[11] M. Palanikumar, K. Arulmozhi, On various ideals and its applications of bisemirings, Gedrag and Organisatie
Review, vol. 33, no. 2, pp. 522-533, 2020.
[12] M. Palanikumar, K. Arulmozhi, On intuitionistic fuzzy normal subbisemirings of bisemirings, Nonlinear
Studies, vol. 28, no. 3, pp. 717-721, 2021.
[13] M. Palanikumar, K. Arulmozhi, On new ways of various ideals in ternary semigroups, Matrix Science
Mathematic, vol. 4, no. 1, pp. 6-9, 2020.
[14] M. Palanikumar, K. Arulmozhi, (α, β)-Neutrosophic subbisemiring of bisemiring, Neutrosophic Sets
and Systems, vol. 48, pp. 368-385, 2022.
[15] M. Palanikumar, K. Arulmozhi, On various tri-ideals in ternary semirings, Bulletin of the International
Mathematical Virtual Institute, vol. 11, no. 1, pp. 79-90, 2021.
[16] M. Palanikumar, K. Arulmozhi, On Pythagorean normal subbisemiring of bisemiring, Annals of Communications
in Mathematics, vol. 4, no. 1, pp. 63-72, 2021.
[17] M. Palanikumar, K. Arulmozhi, On various almost ideals of semirings, Annals of Communications in
Mathematics, vol. 4, no. 1, 17-25, 2021.
[18] M. K. Sen, S. Ghosh, An introduction to bisemirings, Asian Bulletin of Mathematics, vol. 28, no. 3, pp.
547-559, 2001.
[19] F. Smarandache, A unifying field in logics. Neutrosophy: neutrosophic probability, set and logic, American
Research Press, Rehoboth, 1999.
[20] R. R. Yager, Pythagorean membership grades in multi criteria decision-making, IEEE Transactions on
Fuzzy Systems, vol. 22, no. 4, pp. 958-965, 2014.
[21] L. A. Zadeh, Fuzzy sets, Information and Control, vol. 8, no. 3, pp. 338-353, 1965.