International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 20 , Issue 1 , PP: 106-118, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

New algebraic extension of interval valued Q-neutrosophic normal subbisemirings of bisemirings

M. Palanikumar 1 * , K. Arulmozhi 2 , Aiyared Iampan 3 , Said Broumi 4

  • 1 Department of Advanced Mathematical Science, Saveetha School of Engineering, Saveetha University, Saveetha Institute of Medical and Technical Sciences, Chennai-602105, India - (palanimaths86@gmail.com)
  • 2 Department of Mathematics, Bharath Institute of Higher Education and Research, Tamil Nadu, Chennai-600073, India - (arulmozhiems@gmail.com)
  • 3 Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand - (aiyared.ia@up.ac.th)
  • 4 Laboratory of Information Processing, Faculty of Science Ben M’Sik, Universit´s Hassan II, BP 7955 Casablanca, Morocco - (broumisaid78@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.200109

    Received: July 08, 2022 Accepted: December 22, 2022
    Abstract

    In this research article, we introduce the notions of interval valued Q-neutrosophic subbisemirings (IVQNSSBSs), level sets of an IVQNSSBS and interval valued Q-neutrosophic normal subbisemirings (IVQNSNSBSs) of bisemirings. Let Y be an interval valued Q-neutrosophic set (IVQNS set) in a bisemiring . Prove that Y is an IVQNSSBS of S if and only if all nonempty level set Ξ(t,s) is a subbisemiring (SBS) of S for t, s D[0, 1]. Let Y be an IVQNSSBS of a bisemiring and V be the strongest interval valued Qneutrosophic relation of . Prove that Y is an IVQNSSBS of S if and only if V is an IVQNSSBS of × . We illustrate homomorphic image of IVQNSSBS is an IVQNSSBS. Prove that homomorphic preimage of IVQNSSBS is an IVQNSSBS. Examples are given to demonstrate our findings.

    Keywords :

    interval valuedQ-neutrosophic subbisemiring , interval valuedQ-neutrosophic normal subbisemiring ,

    subbisemiring , homomorphism.

    References

    [1] J. Ahsan, K. Saifullah, F. Khan, Fuzzy semirings, Fuzzy Sets and systems, vol. 60, pp. 309-320, 1993.

    [2] M. Al-Tahan, B. Davvaz, M. Parimala, A note on single valued neutrosophic sets in ordered groupoids,

    International Journal of Neutrosophic Science, vol. 10, no. 2, pp. 73-83, 2020.

    [3] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications

    in multi-attribute decision making problems, Journal of Intelligent and Fuzzy Systems, vol. 36, pp. 2829-

    2844, 2019.

    [4] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87-96, 1986.[5] B. C. Cuong, V. Kreinovich, Picture fuzzy sets a new concept for computational intelligence problems,

    Proceedings of 2013 Third World Congress on Information and Communication Technologies (WICT

    2013), IEEE, pp. 1-6, 2013.

    [6] F. Hussian, R. M. Hashism, A. Khan, M. Naeem, Generalization of bisemirings, International Journal of

    Computer Science and Information Security, vol. 14, no. 9, pp. 275-289, 2016.

    [7] A. Iampan, P. Jayaraman, S. D. Sudha, N. Rajesh, Interval-valued neutrosophic ideals of Hilbert algebras,

    International Journal of Neutrosophic Science, vol. 18, no. 4, pp. 223-237, 2022.

    [8] A. Iampan, P. Jayaraman, S. D. Sudha, N. Rajesh, Interval-valued neutrosophic subalgebras of Hilbert

    algebras, Asia Pacific Journal of Mathematics, vol. 9, Article no. 16, 2022.

    [9] L. Jagadeeswari, V. J. Sudhakar, V. Navaneethakumar, S. Broumi, Certain kinds of bipolar interval valued

    neutrosophic graphs, International Journal of Neutrosophic Science, vol. 16, no. 1, pp. 49-61, 2021.

    [10] S. J. Golan, Semirings and their applications, Kluwer Academic Publishers, London, 1999.

    [11] M. Palanikumar, K. Arulmozhi, On various ideals and its applications of bisemirings, Gedrag and Organisatie

    Review, vol. 33, no. 2, pp. 522-533, 2020.

    [12] M. Palanikumar, K. Arulmozhi, On intuitionistic fuzzy normal subbisemirings of bisemirings, Nonlinear

    Studies, vol. 28, no. 3, pp. 717-721, 2021.

    [13] M. Palanikumar, K. Arulmozhi, On new ways of various ideals in ternary semigroups, Matrix Science

    Mathematic, vol. 4, no. 1, pp. 6-9, 2020.

    [14] M. Palanikumar, K. Arulmozhi, (α, β)-Neutrosophic subbisemiring of bisemiring, Neutrosophic Sets

    and Systems, vol. 48, pp. 368-385, 2022.

    [15] M. Palanikumar, K. Arulmozhi, On various tri-ideals in ternary semirings, Bulletin of the International

    Mathematical Virtual Institute, vol. 11, no. 1, pp. 79-90, 2021.

    [16] M. Palanikumar, K. Arulmozhi, On Pythagorean normal subbisemiring of bisemiring, Annals of Communications

    in Mathematics, vol. 4, no. 1, pp. 63-72, 2021.

    [17] M. Palanikumar, K. Arulmozhi, On various almost ideals of semirings, Annals of Communications in

    Mathematics, vol. 4, no. 1, 17-25, 2021.

    [18] M. K. Sen, S. Ghosh, An introduction to bisemirings, Asian Bulletin of Mathematics, vol. 28, no. 3, pp.

    547-559, 2001.

    [19] F. Smarandache, A unifying field in logics. Neutrosophy: neutrosophic probability, set and logic, American

    Research Press, Rehoboth, 1999.

    [20] R. R. Yager, Pythagorean membership grades in multi criteria decision-making, IEEE Transactions on

    Fuzzy Systems, vol. 22, no. 4, pp. 958-965, 2014.

    [21] L. A. Zadeh, Fuzzy sets, Information and Control, vol. 8, no. 3, pp. 338-353, 1965.

    Cite This Article As :
    Palanikumar, M.. , Arulmozhi, K.. , Iampan, Aiyared. , Broumi, Said. New algebraic extension of interval valued Q-neutrosophic normal subbisemirings of bisemirings. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 106-118. DOI: https://doi.org/10.54216/IJNS.200109
    Palanikumar, M. Arulmozhi, K. Iampan, A. Broumi, S. (2023). New algebraic extension of interval valued Q-neutrosophic normal subbisemirings of bisemirings. International Journal of Neutrosophic Science, (), 106-118. DOI: https://doi.org/10.54216/IJNS.200109
    Palanikumar, M.. Arulmozhi, K.. Iampan, Aiyared. Broumi, Said. New algebraic extension of interval valued Q-neutrosophic normal subbisemirings of bisemirings. International Journal of Neutrosophic Science , no. (2023): 106-118. DOI: https://doi.org/10.54216/IJNS.200109
    Palanikumar, M. , Arulmozhi, K. , Iampan, A. , Broumi, S. (2023) . New algebraic extension of interval valued Q-neutrosophic normal subbisemirings of bisemirings. International Journal of Neutrosophic Science , () , 106-118 . DOI: https://doi.org/10.54216/IJNS.200109
    Palanikumar M. , Arulmozhi K. , Iampan A. , Broumi S. [2023]. New algebraic extension of interval valued Q-neutrosophic normal subbisemirings of bisemirings. International Journal of Neutrosophic Science. (): 106-118. DOI: https://doi.org/10.54216/IJNS.200109
    Palanikumar, M. Arulmozhi, K. Iampan, A. Broumi, S. "New algebraic extension of interval valued Q-neutrosophic normal subbisemirings of bisemirings," International Journal of Neutrosophic Science, vol. , no. , pp. 106-118, 2023. DOI: https://doi.org/10.54216/IJNS.200109