Volume 20 , Issue 1 , PP: 49-58, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
M. Palanikumar 1 * , Aiyared Iampan 2 , K. Arulmozhi 3 , D. Iranian 4 , A. Seethalakshmy 5 , R. Raghavendran 6
Doi: https://doi.org/10.54216/IJNS.200104
We introduce the notions of (τ1, τ2)-interval valued Q1 neutrosophic subbisemirings (IVQ1NSBSs), level
sets of a (τ1, τ2)-IVQ1NSBS, and (τ1, τ2)-interval valued Q1 neutrosophic normal subbisemirings ((τ1, τ2)-
IVQ1NNSBS) of a bisemiring. Let cZ1 be a (τ1, τ2)-IVQ1NSBS of a bisemiring M and bV be the strongest
(τ1, τ2)-interval valued Q1 neutrosophic relation of M. To illustrate cZ1 is a (τ1, τ2)-IVQ1NSBS of M if and
only if bV is a (τ1, τ2)-IVQ1NSBS of M ⋇ M. We show that homomorphic image of (τ1, τ2)-IVQ1NSBS is
again a (τ1, τ2)-IVQ1NSBS. To determine homomorphic pre-image of (τ1, τ2)-IVQ1NSBS is also a (τ1, τ2)-
IVQ1NSBS. Examples are given to strengthen our results.
bisemiring , (&tau , 1 , &tau , 2)-IVQ1NSBS , (&tau , 1, &tau , 2)-IVQ1NNSBS , SBS , homomorphism.
[1] A. B. AL-Nafee, S. Broumi, L. A. Swidi, n-Valued refined neutrosophic crisp sets, International Journal
of Neutrosophic Science, vol. 17, no. 2, pp. 87-95, 2021.
[2] J. Ahsan, K. Saifullah, F. Khan, Fuzzy semirings, Fuzzy Sets and systems, vol. 60, pp. 309-320, 1993.
[3] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications
in multi-attribute decision making problems, Journal of Intelligent and Fuzzy Systems, vol. 36, pp. 2829-
2844, 2019.
[4] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87-96, 1986.
[5] B. C. Cuong, V. Kreinovich, Picture fuzzy sets a new concept for computational intelligence problems,
Proceedings of 2013 Third World Congress on Information and Communication Technologies (WICT
2013), IEEE, pp. 1-6, 2013.
[6] F. Hussian, R. M. Hashism, A. Khan, M. Naeem, Generalization of bisemirings, International Journal of
Computer Science and Information Security, vol. 14, no. 9, pp. 275-289, 2016.
[7] S. J. Golan, Semirings and their applications, Kluwer Academic Publishers, London, 1999.
[8] M. Lathamaheswari, S. Broumi, F. Smarandache, S. Sudha, Neutrosophic perspective of neutrosophic
probability distributions and its application, International Journal of Neutrosophic Science, vol. 17, no.
2, pp. 96-109, 2021.