International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 20 , Issue 1 , PP: 49-58, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

New approach towards (ζ1, ζ2)-interval valued Q1 neutrosophic subbisemirings of bisemirings and its extension

M. Palanikumar 1 * , Aiyared Iampan 2 , K. Arulmozhi 3 , D. Iranian 4 , A. Seethalakshmy 5 , R. Raghavendran 6

  • 1 Department of Advanced Mathematical Science, Saveetha School of Engineering, Saveetha University, Saveetha Institute of Medical and Technical Sciences, Chennai-602105, India - (palanimaths86@gmail.com)
  • 2 Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand - (aiyared.ia@up.ac.th)
  • 3 Department of Mathematics, Bharath Institute of Higher Education and Research, Tamil Nadu, Chennai-600073, India - (arulmozhiems@gmail.com)
  • 4 Department of Advanced Mathematical Science, Saveetha School of Engineering, Saveetha University, Saveetha Institute of Medical and Technical Sciences, Chennai-602105, India - (mdiranian74@gmail.com)
  • 5 Department of Advanced Mathematical Science, Saveetha School of Engineering, Saveetha University, Saveetha Institute of Medical and Technical Sciences, Chennai-602105, India - (apseethalakshmy@gmail.com)
  • 6 Department of Advanced Mathematical Science, Saveetha School of Engineering, Saveetha University, Saveetha Institute of Medical and Technical Sciences, Chennai-602105, India - (lakshmiragha1986@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.200104

    Received: June 02, 2022 Accepted: December 03, 2022
    Abstract

    We introduce the notions of (τ1, τ2)-interval valued Q1 neutrosophic subbisemirings (IVQ1NSBSs), level

    sets of a (τ1, τ2)-IVQ1NSBS, and (τ1, τ2)-interval valued Q1 neutrosophic normal subbisemirings ((τ1, τ2)-

    IVQ1NNSBS) of a bisemiring. Let cZ1 be a (τ1, τ2)-IVQ1NSBS of a bisemiring M and bV be the strongest

    (τ1, τ2)-interval valued Q1 neutrosophic relation of M. To illustrate cZ1 is a (τ1, τ2)-IVQ1NSBS of M if and

    only if bV is a (τ1, τ2)-IVQ1NSBS of M ⋇ M. We show that homomorphic image of (τ1, τ2)-IVQ1NSBS is

    again a (τ1, τ2)-IVQ1NSBS. To determine homomorphic pre-image of (τ1, τ2)-IVQ1NSBS is also a (τ1, τ2)-

    IVQ1NSBS. Examples are given to strengthen our results.

    Keywords :

    bisemiring , (&tau , 1 , &tau , 2)-IVQ1NSBS , (&tau , 1, &tau , 2)-IVQ1NNSBS , SBS , homomorphism.

    References

    [1] A. B. AL-Nafee, S. Broumi, L. A. Swidi, n-Valued refined neutrosophic crisp sets, International Journal

    of Neutrosophic Science, vol. 17, no. 2, pp. 87-95, 2021.

    [2] J. Ahsan, K. Saifullah, F. Khan, Fuzzy semirings, Fuzzy Sets and systems, vol. 60, pp. 309-320, 1993.

    [3] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications

    in multi-attribute decision making problems, Journal of Intelligent and Fuzzy Systems, vol. 36, pp. 2829-

    2844, 2019.

    [4] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87-96, 1986.

    [5] B. C. Cuong, V. Kreinovich, Picture fuzzy sets a new concept for computational intelligence problems,

    Proceedings of 2013 Third World Congress on Information and Communication Technologies (WICT

    2013), IEEE, pp. 1-6, 2013.

    [6] F. Hussian, R. M. Hashism, A. Khan, M. Naeem, Generalization of bisemirings, International Journal of

    Computer Science and Information Security, vol. 14, no. 9, pp. 275-289, 2016.

    [7] S. J. Golan, Semirings and their applications, Kluwer Academic Publishers, London, 1999.

    [8] M. Lathamaheswari, S. Broumi, F. Smarandache, S. Sudha, Neutrosophic perspective of neutrosophic

    probability distributions and its application, International Journal of Neutrosophic Science, vol. 17, no.

    2, pp. 96-109, 2021.

    Cite This Article As :
    Palanikumar, M.. , Iampan, Aiyared. , Arulmozhi, K.. , Iranian, D.. , Seethalakshmy, A.. , Raghavendran, R.. New approach towards (ζ1, ζ2)-interval valued Q1 neutrosophic subbisemirings of bisemirings and its extension. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 49-58. DOI: https://doi.org/10.54216/IJNS.200104
    Palanikumar, M. Iampan, A. Arulmozhi, K. Iranian, D. Seethalakshmy, A. Raghavendran, R. (2023). New approach towards (ζ1, ζ2)-interval valued Q1 neutrosophic subbisemirings of bisemirings and its extension. International Journal of Neutrosophic Science, (), 49-58. DOI: https://doi.org/10.54216/IJNS.200104
    Palanikumar, M.. Iampan, Aiyared. Arulmozhi, K.. Iranian, D.. Seethalakshmy, A.. Raghavendran, R.. New approach towards (ζ1, ζ2)-interval valued Q1 neutrosophic subbisemirings of bisemirings and its extension. International Journal of Neutrosophic Science , no. (2023): 49-58. DOI: https://doi.org/10.54216/IJNS.200104
    Palanikumar, M. , Iampan, A. , Arulmozhi, K. , Iranian, D. , Seethalakshmy, A. , Raghavendran, R. (2023) . New approach towards (ζ1, ζ2)-interval valued Q1 neutrosophic subbisemirings of bisemirings and its extension. International Journal of Neutrosophic Science , () , 49-58 . DOI: https://doi.org/10.54216/IJNS.200104
    Palanikumar M. , Iampan A. , Arulmozhi K. , Iranian D. , Seethalakshmy A. , Raghavendran R. [2023]. New approach towards (ζ1, ζ2)-interval valued Q1 neutrosophic subbisemirings of bisemirings and its extension. International Journal of Neutrosophic Science. (): 49-58. DOI: https://doi.org/10.54216/IJNS.200104
    Palanikumar, M. Iampan, A. Arulmozhi, K. Iranian, D. Seethalakshmy, A. Raghavendran, R. "New approach towards (ζ1, ζ2)-interval valued Q1 neutrosophic subbisemirings of bisemirings and its extension," International Journal of Neutrosophic Science, vol. , no. , pp. 49-58, 2023. DOI: https://doi.org/10.54216/IJNS.200104